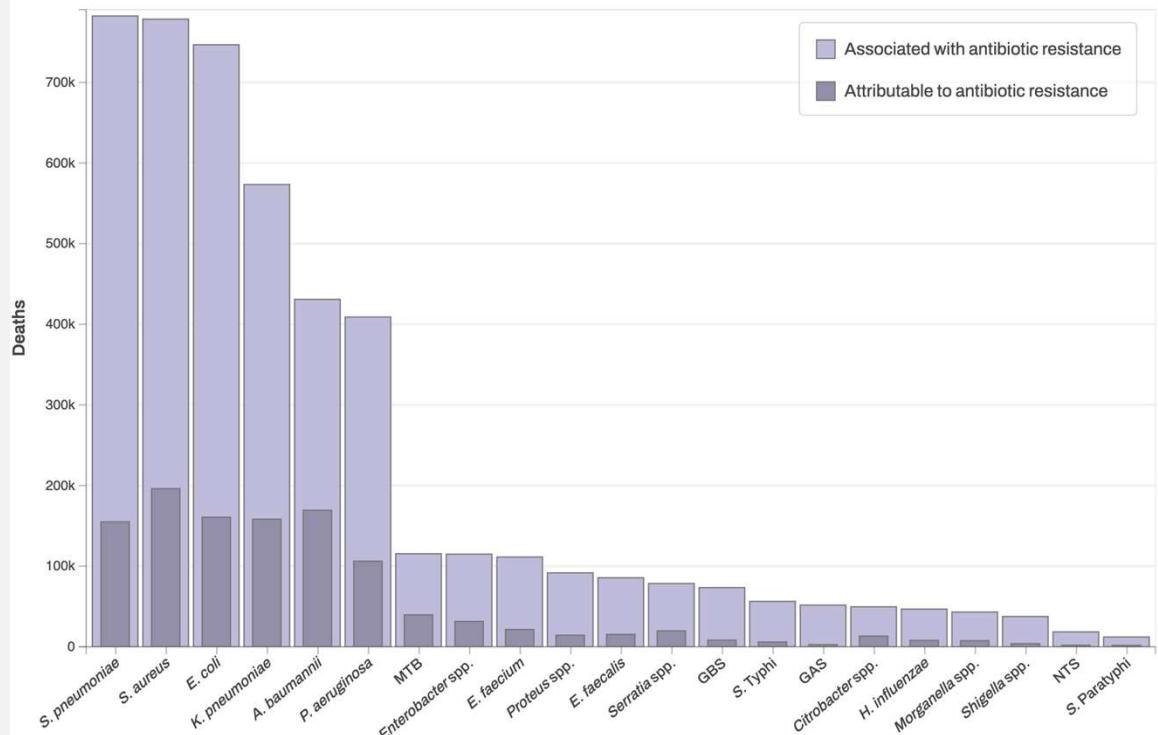


AMR & Role of Novel Vaccines

DCVMN AGM 2025

Birgitte Giersing, PhD

Unit head, Vaccine research, development and policy


Department of Immunization, vaccines & biologicals

The burden of AMR

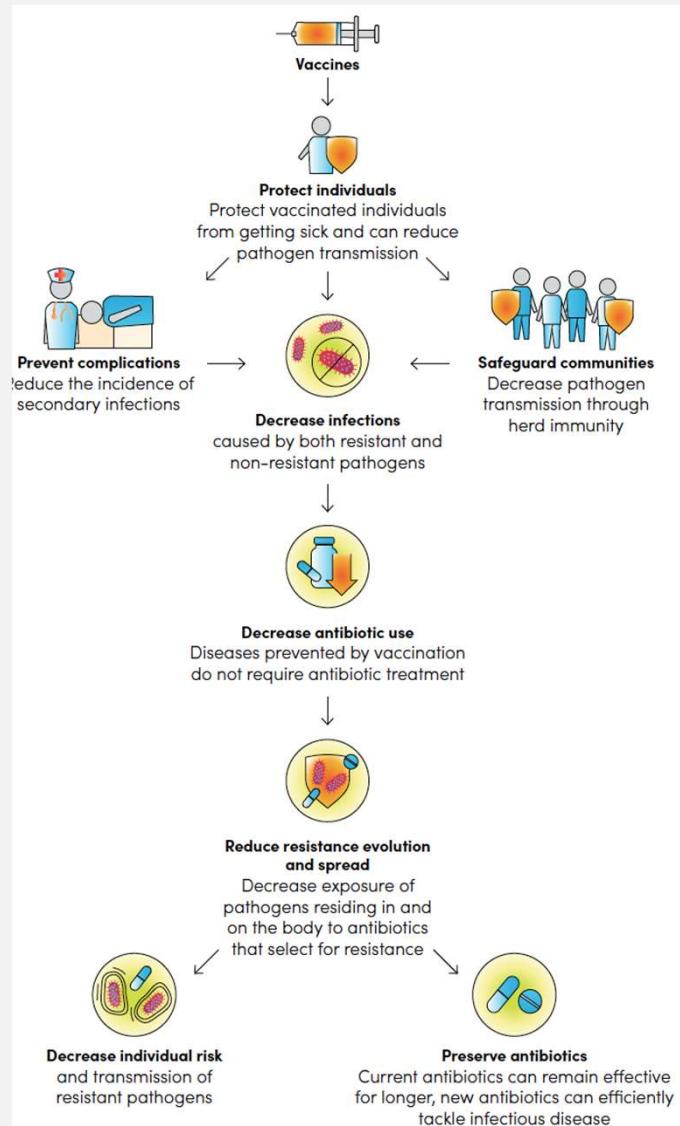
- AMR is a global health threat with **1.14 million deaths** **attributable** to bacterial AMR and **4.71 million deaths** **associated** with bacterial AMR worldwide in 2021;
- **Attributable**: deaths are the result of a progression from a drug sensitive to a drug resistant infection;
- **Associated**: deaths are the result of a progression from no infection to a drug resistant infection;

The number of deaths associated and attributable to resistance by pathogen, in 2021

How do vaccines reduce AMR?

Vaccines prevent infections with drug-susceptible and resistant pathogens

Vaccines prevent individuals and communities from getting sick



Decrease antibiotic use (causal chain)

Suppress resistance evolution and decrease transmission of resistant pathogens (causal chain)

<https://www.who.int/publications/m/item/leveraging-vaccines-to-reduce-antibiotic-use-and-prevent-antimicrobial-resistance>

WHO report: Estimating the impact of vaccines in reducing antimicrobial resistance and use

The role of vaccines in reducing AMR has been underrecognised, yet they play a vital role in protecting against pathogens and preventing infection-related complications

Existing vaccines and candidates in early and late-stage clinical development for 24 pathogens have the potential to annually avert up to:

- **515,000 deaths**
- **28 million DALYs**
- **US \$30 billion in hospital costs**
- **US \$20 billion in productivity losses**

Which are all associated with AMR

These vaccines could also help to reduce antibiotic use by **2.5 billion doses**

Estimating the impact of vaccines in reducing antimicrobial resistance and antibiotic use

Acinetobacter baumannii (AB-1)

Table 4.1. A vaccine against bloodstream *A. baumannii* infection given to 70% of infants and elderly people, with 5-year efficacy of 70% [AB-1]

Target pathogen: <i>Acinetobacter baumannii</i>	Targeting: Infants and elderly	Duration: 5 years	Usage scenario: Efficacy: 70% Coverage: 70%	WHO AMR priority: CRITICAL	Feasibility of vaccine development and implementation: LOW
Vaccine name: AB-1	Op				
WHO region	Deaths associated with resistance in 2019 (95% UI)	Deaths associated with resistance averted by a vaccine in 2019 (95% UI)	Deaths associated with resistance in 2019 (95% UI)	Deaths associated with resistance averted by a vaccine in 2019 (95% UI)	Deaths associated with resistance averted by a vaccine in 2019 (95% UI)
AFR	16 000 (14 000–19 000)	1169 (771–1686)	949 000 (789 000–1.2 million)	79 500 (48 500–106 000)	
EUR	14 000 (11 500–17 000)	867 (640–1029)	312 000 (267 000–369 000)	21 000 (11 500–39 000)	
EMR	16 500 (14 000–29 000)	1229 (766–1981)	646 000 (546 000–757 000)	45 500 (30 500–61 000)	
SEAR	66 500 (56 700–79 000)	4754 (2751–9168)	2.2 (1.9–2.6) million	128 000 (82 000–217 000)	
AMR	23 500 (20 000–27 500)	1600 (917–2921)	603 000 (530 000–678 000)	47 000 (31 000–70 000)	
WPR	99 500 (83 900–121 500)	7901 (4862–14 500)	2.4 (2.2–2.8) million	131 000 (114 000–313 000)	
GLOBAL	236 000 (217 000–351 500)	18 000 (13 500–25 500)	7 (5.7–7.5) million	505 000 (411 000–658 000)	

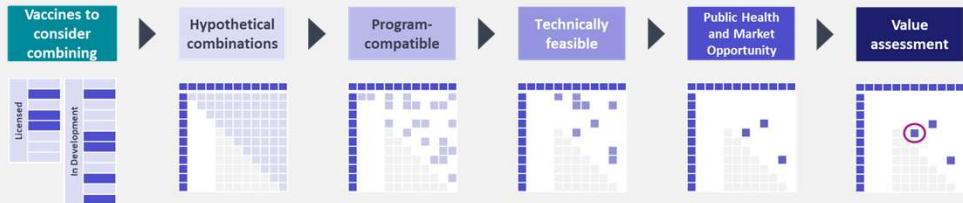
WHO region	Pathogen-associated antibiotic use in 2019, DDD (95% UI)	Pathogen-associated antibiotic use averted by a vaccine in 2019, DDD (95% UI)
AFR	5.6 (2.8–9.8) million	280 000 (110 000–520 000)
EUR	1.0 (0.5–2.0) million	50 000 (23 000–98 000)
EMR	4.6 (3.3–6.5) million	210 000 (140 000–320 000)
SEAR	12 (8.8–16) million	520 000 (350 000–850 000)
AMR	1.0 (0.4–1.6) million	50 000 (22 000–81 000)
WPR	6 (4.5–7.5) million	280 000 (200 000–430 000)
GLOBAL	30 (22–41) million	1.4 million (950 000–2.1 million)

WHO region	Hospital costs associated with resistance in 2019, US dollars (95% UI)	Hospital costs associated with resistance averted by a vaccine in 2019, US dollars (95% UI)	Productivity losses associated with resistance in 2019, US dollars	Productivity losses associated with resistance averted by a vaccine in 2019, US dollars
AFR	205 (118–337) million	2.4 (1.4–3.9) million	526 million	33 million
EUR	709 (517–974) million	14.3 (10.7–18.0) million	1324 million	30 million
EMR	883 (442–1321) million	18.7 (3.3–22.2) million	1087 million	50 million
SEAR	396 (220–646) million	5.8 (3.3–9.3) million	2587 million	65 million
AMR	224 (127–372) million	46.3 (24.3–84.4) million	3096 million	121 million
WPR	1408 (108–258) million	30.1 (16.6–52.2) million	6345 million	132 million
GLOBAL	5832 (4500–7011) million	109 (79.8–152) million	14 966 million	430 million

Status of development of vaccines for bacteria on the WHO priority list

<https://www.who.int/publications/item/9789240093461>

Pathogen	Use case	Phase I	Phase II	Phase III
<i>Mycobacterium tuberculosis</i> (TB)	Prevention of active pulmonary TB disease (with or without evidence of latent infection), including in those with HIV infection	2 SSI CanSino	6 Bharat/AVI, BioNTech x2 Qurat, Oxford Uni, Anhui Zhifei Longcom ²	3 SII Gates MRI Gamalaya Res. Centre
<i>Shigella</i> spp	Prevention of moderate to severe diarrhoea due to <i>Shigella</i> in infants from 6 months and children up to 36 months of age		4 GVGH/Bharat Biotech LimaTech/Valneva Eveliqure Institut Pasteur	1 Zhifei
<i>Salmonella</i> (non-typhoidal)	Paediatric vaccines for prevention of invasive disease caused by non-typhoidal <i>Salmonella</i> in children aged 6–36 months, with and without a typhoid conjugate	1 INTS-TCV (GVGH)	INTS-GMMA (GVGH) TSCV (Uni. Maryland & Bharat)	
<i>Streptococcus pyogenes</i> (group A streptococcus)	Prevention of GAS disease: pharyngitis, impetigo and invasive disease in young children. Potential for prevention of GAS immune-mediated sequelae: acute rheumatic fever and rheumatic heart disease	3 Dalhousie Uni. Queens'l Inst. Med. Research Uni. of Alberta & Griffith Uni.		
<i>Streptococcus agalactiae</i> (group B streptococcus)	Maternal immunisation during pregnancy to prevent GBS-related stillbirth and invasive GBS disease in neonates and young infants	1 PATH-Inventprise	1 MinerVax	1 Pfizer
<i>Klebsiella pneumoniae</i>	Vaccine administered during pregnancy to prevent neonatal sepsis caused by the major disease-causing serotypes of <i>K pneumoniae</i>	1 CHO Pharma ¹		


Note: [1] The CHO Pharma *Klebsiella* vaccine is currently being developed as a preventive vaccine against nosocomial and community-acquired infections caused by hypervirulent *Klebsiella pneumoniae* K1 & K2 serotypes. It is not currently being evaluated as a maternal use vaccine.

Development of a framework to identify Novel Combination Vaccines for Endemic Pathogens for Children Under 5 Years of Age

2025	2026
------	------

Identify and prioritize novel vaccine combinations for children under 5 that do not increase the number of injections

Staged approach to prioritize combinations

1. Identify vaccines to consider combining and apply entry criteria to focus on the most relevant vaccines
2. Combine vaccines pairwise for analysis
3. Identify programmatically compatible combinations
4. Identify technically feasible combinations
5. Identify the combinations with greatest potential impact and sustainability
6. Health economics value assessment and priorities

Goal

To develop a combination vaccine priority-setting framework that identifies **novel vaccine combinations** likely to be:

- Programmatically compatible
- Technically feasible
- Impactful in the long term

Combinations that have a synergistic affect on AMR?

Preliminary results: Programmatically compatible, technically feasible combinations (licensed + licensed)

Compatibility with	Injectable																	
	HepB	PCV	MenB	C19 (Pfizer)	EV71	JE (inact.)	Men ACWY (Pfizer)	Men ACWY (GSK)	Men ACWY (Menacta)	Men ACWYX	Men ACWY (MenQ)	MR	MMR	MMRV	TCV	YF	DTwP	HepA (inact.)
BCG	AR																	
Hemo aP	P	P				<5												
Hemo wP	P	P				<5												
PCV		<5				<5												
MenB																		
Malaria (GSK)																		
Malaria (SII)																		
C19 (Moderna)																		
C19 (Pfizer)																		
EV71 (inact.)																		
EV71 (attenuated)																		
JE (inact.)																		
JE (recombinant)																		
MenACWY (Pfizer)																		
MenACWY (GSK)																		
MenACWY (SP-Menacta)																		
MenACWYX																		
MenACWY (SP-MenQuadfi)																		
MR																		
MMR																		
MMRV																		
TCV																		
YF																		
DTwP																		
HepA (inact.)																		
HepA (live)																		

Legend
P1 feqs. in 2 years
P1 feqs. in 5 years
Prog Med, Low, VLow

Oral
Compat. Rota
SOPV PS

DRAFT: Results currently under review
Vaccines without compatible, feasible combinations are not shown

Overview of the session

Speakers:

- Dr. Sushant Sahastrabudhe, Dy. DG (Acting) - IVI
- Dr. Laurence Mulard, Head of Laboratory - Institut Pasteur
- Prof. Maria Elena Bottazzi, Co-Director of Texas Children's Hospital Center for Vaccine Development - Baylor College of Medicine

Panelists:

- Mr. Stefano Malvolti, Managing Director - MMGH Consulting
- Dr. Michael Karl Schunk, Senior Industry Specialist-Vaccines & Biopharma - IFC
- Dr. Frauke Uekermann, Director Vaccines Market - CHAI
- Dr. Ankur Mutreja, Director of Strategy, Partnerships & Communications - PATH