

Empowering LMICs: Maximizing Impact through Collaborative Establishment of mRNA Platform Technologies

DCVMN AGM

Josephine Cheng
Senior Modality Leader RNA Therapeutics
Process Solutions, Merck Life Science
Bali, Oct. 2025

Millipore[®]
Expert Pharm/BioPharm
Products & CTDMO Services

MERCK

Agenda

- 0 1 The world of collaboration
- 0 2 Highlighting 3 cases throughout the pandemic
- 0 3 Technical sharing of our recent publication
- 0 4 Summary

Millipore®

MERCK

01

Collaborations

Millipore[®]
Expert Pharm/BioPharm
Products & CTDMO Services

MERCK

Public-Private Partnerships (PPP)

COVAX Facility/AMC, pooled procurement, APAs

Advance Purchase Agreements (APAs)

Upfront funding & dose commitments

Pandemic Preparedness

CEPI & the 100 Days Mission; regional capacity

Regulatory Pathways

WHO EUL (emergencies) & WHO Prequalification (PQ)

Strategic Partnership

Acceleration of recourse allocation and maintain focus

Technology Transfer (TT)

WHO/MPP mRNA CoE & partners; training & platform enablement

CDMO

End-to-end dev & GMP manufacturing support

Millipore®

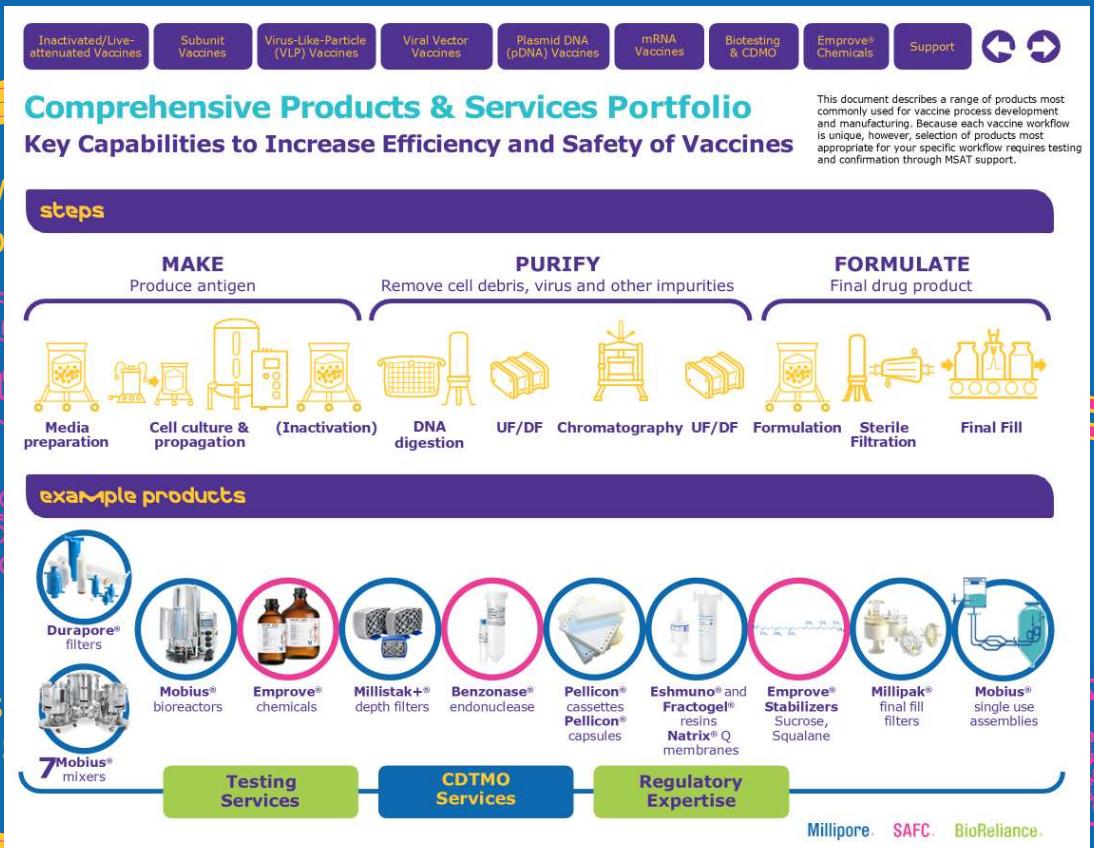
Common Goals

vaccine collaborations aim to deliver faster, fairer, safer, and more sustainable access to immunization

MERCK

SL1 What are these dots?

Sui-Ching Low, 2025-10-28T01:29:48.636


How We Serve the Vaccine Industry

Millipore®

Products vs
Quality do

Process
& down

Collaborations
Training

Industry and academic
partnerships

MERCK

Speed to clinic and
simplified compliance

Merck has long history of collaborating in vaccine industry

Public Academia, industry references and collaborations

Millipore®

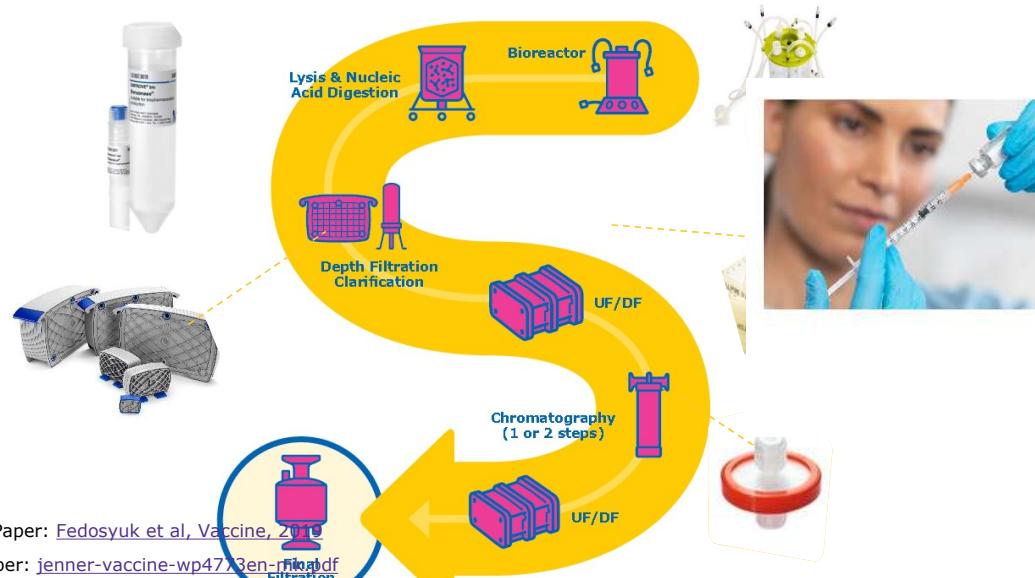
02

Millipore[®]
Expert Pharm/BioPharm
Products & CTDMO Services

Highlighting 3 cases throughout the pandemic

Rabies vaccine – Jenner Institute/ Oxford U. (2018)

Shistosomiasis – Baylor College of Medicine (2019)


WHO/MPP mRNA Tech Transfer Programme (2022)

MERCK

Collaborate to Build Effective and Cost-efficient Processes Early Phase Production for Ade-Vector-Based Vaccines

Millipore®

- **Objective:** Develop a cost effective, rapid platform for adenovirus vector using a Rabies vaccine candidate for clinical phase 1 material, using single use and filtration technologies.
- **Partner:** The Jenner Institute, University of Oxford, UK

Publication:

- Journal Paper: [Fedosyuk et al, Vaccine, 2019](#)
- Whitepaper: [jenner-vaccine-wp47X3en-miaodf](#)
- News: [Merck Supports Jenner Institute to Reach First Milestone in Covid-19 Vaccine Manufacturing](#)

8

Key achievements

- Development of a platform at 4L batch scale for 2000 doses
- **1 week process (5 Days)**

Optimized Clarification & TFF

14 Apr 2020

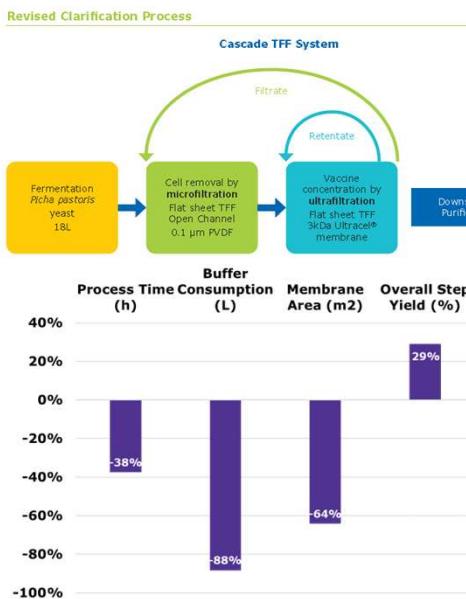
Merck Supports Jenner Institute to Reach First Milestone in Covid-19 Vaccine Manufacturing

Merck and The Jenner Institute today announced that the Jenner Institute has laid the foundation for large-scale production of its Covid-19 vaccine candidate, ChAdOx1 nCoV-19.

were done hand in hand with Merck engineers

Collaborate to Build Effective and Cost-efficient Processes

Process optimization for rProtein-based vaccine candidates for neglected tropical disease Schistosomiasis



Background:

- a disease caused by parasitic worms impacting 240M people.
- Since 2007, Merck works with WHO to provide up to 250 million praziquantel (PZQ) tablets annually, reaching 1.5B tablets to date.
- Global Schistosomiasis Alliance (GSA) coordinates efforts to eliminate schistosomiasis by advocating for resources and promoting effective prevention, treatment, and control strategies.
- The need for vaccines: targeting specific components of the schistosome parasites to elicit an immune response that can prevent infection, reduce need for praziquantel.
- Partner: Texas Children's Hospital Center for Vaccine Development (TCH-CVD), Baylor College of Medicine, USA

Objectives:

Optimize a protein based vaccine Sm-TSP-2 derived from *P. Pastoris* for cost effective manufacturing targeting LMICs using Schistosomiasis candidate

Key Achievements

- Reduction of process complexity
- Fouling & buffer use & membrane area requirements; Smaller manufacturing footprint
- 1.7 x higher concentration factor achieved; Shorter process time
- Replacing Imidazole by Histidine making it feasible for parenteral vaccine formulation.
- **(2022) The work WAS leveraged for RBD-COVID-19 candidate development which was tech-transferred to Biological E (India) and Biofarma (Indonesia), and now approved to serve the world.**

Publication:

- Whitepaper Schistosomiasis process optimization: [neglected-tropical-diseases-wp12707en-mk.pdf](https://www.merckgroup.com/en/sustainability/health-for-all/schistosomiasis.html)
- Whitepaper Baylor platform tech transferred for COVID vaccines: [vaccines-technology-transfer-wp12706en-mk.pdf](https://www.merckgroup.com/en/sustainability/health-for-all/schistosomiasis.html)

*More details to check - <https://www.merckgroup.com/en/sustainability/health-for-all/schistosomiasis.html>

Collaborate to empower LMICs for sustainable manufacturing WHO/MPP mRNA Tech Transfer Programme

Millipore®

Background:

The Programme is an initiative to facilitate the development and manufacturing of mRNA vaccines and therapeutics in low- and middle-income countries, launched in response to the COVID-19 pandemic to enhance global access by transferring mRNA technology and expertise.

Key Achievements

- Established relationships with key stakeholders (MPP, Afrigen, Biovac) and an internal network of 15 global partners (EMEA8, APAC5, LATAM2).
- Supported Afrigen's mRNA GMP-Ready process optimization from a green-field project with local and global technical assistance.
- Signed an MOU for a strategic partnership with Afrigen, backed by collaboration agreements.
- Provided technology support for the mRNA platform, including TFF, NFF, Single-Use, and Chemicals, along with a co-published whitepaper.
- Conducted a 2-week foundational training to build human capacity; the first session was in Singapore M Lab (Jan 2025), with a second planned for Molsheim M Lab (Oct 2025).
- Recognized as a high-profile project, with internal award in 2025, showcasing Merck's commitment to impactful delivery.

MERCK

ONE Merck global team supporting 15 partners

Extensive Merck Support to the Programme and more to come

2022 2023 2024

- integrated solutions intro
- Overall needs
- Training support
- Global alignment
- Extensive technical support
- MOU strategic partnership
- Collaboration agreements
- Seminar
- Whitepaper

- Dialogue seminar with 9 speakers from Afrigen/ USP/ 4 partner sites for panel speakers

- 3rd party Technical Consultant for Merck
- White paper Biovac Story
- Scale up technical support

----- Local teams' regular visits & technical support when needed -----

Africa

Eastern EU & Latam

2025

- **Human Capacity building:** 2-week Foundational Training dedicated for mRNA Hub Programme partners only (10/15) and complementing the Afrigen process technology transfer (Jan – SG, Oct- FR)

Key support established

- Solid support on technical end, TL/ HLN, MOU, Collaborations, and GMP-ready purification process implementation.
- Global Merck internal communication team set up (45+ people) streamlining global local support matrix.
- Engage 50 + Merck people in the dedicated Foundational Training only for Programme partners.
- Established connection with key stakeholders in various partner sites.

2025 Foundational Training participation

Seminar speakers

Key partners platform development and scale up optimization

Foundational Training Training **Intensive hands-on training & openly discussion within the group where they all work on the same Programme**

- Objectives: Skilled workforce enablement.
- 1st session Jan 6 – 17th, Singapore M Lab. 2nd session Oct. 27 – Nov. 7th, Molsheim, France M Lab.
- Participants from R&D, PD, Production and Quality department.
- High engagement and well appreciated by participants!
- Testimonial video by participants showing what they have learned in the training! <[LINK](#)>

Visit us at the Booth!

Recent publication related to mRNA

Whitepaper with Biovac: dedicated Biovac story on backwards integration strategy in the past two decade build up the Biovac today. (Jan, 2025)

White Paper

Spotlight on Biovac

Building Local Biomanufacturing Capacity in South Africa

Acknowledgments: This report was written by Jennifer Brent (Innovation Insights) and David Marion (Opportunities International). Jennifer Brent would like to thank Dr. Jennifer Marion (Opportunities International), Dr. Mark Kock (Carmatell, Germany), Youssef Gazzoum (formerly with Merck KGaA, Darmstadt, Germany), Patrick Tipoo (formerly with Biovac), Lauren Bhavat (Biovac), and Godfrey Firths (Merck KGaA, Darmstadt, Germany, Innovation Insights, and Diorader) for their financial support for this project.

Introduction

Currently, African producers make only one per cent of the world's vaccines. This is less than one per cent of one per cent of the global supply of vaccines.¹ The lack of local vaccine manufacturing capacity is a need for quality vaccine manufacturing capacity across the continent so that every nation could respond effectively to health crises.

The industry can build on the existing capabilities of local manufacturers and work with international companies with experience in filling and finishing products to develop a sustainable local vaccine manufacturing operations between Africa, the rest of the continent, and the rest of the world, and conducting research and development (R&D).²

African political leaders have prioritized manufacturing capacity building and have been working to establish biomanufacturing operations between crises, between countries, and between continents. This report, such as routine vaccinations. Capacity that is left idle cannot be leveraged to respond to health crises in the next crisis hit.

This case study on the Biovac and Vaxine, institutions in southern Africa (the Biovac Institute, hereafter simply Biovac) a South African biopharmaceutical company, illustrates Biovac's strategic evolution from a vaccine supplier to a vaccine manufacturer. The following sections of this report highlights the process, partnerships, and technology transfer that have underpinned the company's progress over time.

MILLIPORE
SIGMA

MilliporeSigma is the U.S. and
Global Business Unit of
Merck KGaA, Darmstadt, Germany.

Whitepaper with Afrigen: the journey to optimize GMP-ready TFF and Bioburden data for mRNA platform! (Aug. 2025)

Webinar in preparation (Dec. 11, 2025)

Elevating mRNA manufacturing toward GMP-readiness for vaccine candidate Afrivac 2121 (Wuhan) under the WHO/MPP mRNA Technology Transfer Programme

Afrigen Biologics Pte. Ltd., Technical Director
Eduardo Pacheco, Ph. D., Senior Scientist / Project Manager
Tatyj Saitch, Ph. D., Senior Scientist
Kavita Patel, Ph. D., Purification and Crystallization
Kiran Patel, Ph. D., Crystallization
Naveen Patel, Ph. D., Quality Assurance Officer

Merck KGaA, Darmstadt, Germany, Senior Biomanufacturing Engineer
Andrea Böckeler, Senior Biomanufacturing Engineer
Wolfram Fritsch, Senior Account Manager
Jasmine Chong, Senior Market Leader mRNA Therapeutics

The WHO/MPP mRNA Technology Transfer Programme

The WHO Technology Transfer Programme, initiated by the World Health Organization (WHO) and Medicines Patent Pool (MPP) in 2021, was established to tackle global inequities in vaccine and therapeutic manufacturing in response to the COVID-19 pandemic. The programme aims to increase access to safe and effective medicines by establishing mRNA vaccine and therapeutic production capabilities enabling greater local and regional access to these medicines for low- and medium-HDI countries.

The programme aims to enhance future pandemic preparedness by providing access to critical technology and ensuring sustainability during inter-pandemic periods through R&D and innovation. Specifically, it focuses on mRNA technology transfer, mRNA vaccine and therapeutic development, and mRNA technology transfer and validation.

To maintain sustainability, the Programme emphasizes development and manufacturing of a wide range of mRNA-based products, including vaccines, therapeutics, and diagnostics, using a variety of mRNA production and delivery technologies.

The WHO Technology Transfer Programme is a South African consortium focused on developing and validating an mRNA manufacturing platform at Afrigen, a South African biotechnology company (the Centre for mRNA Technology Development) and Merck KGaA, Darmstadt, Germany (the Centre for mRNA Therapeutics).

In addition to Afrigen, the consortium includes the South African Medical Research Council (SAMRC), and Biovac, a South African biopharmaceutical company (the Centre for Vaccine Development).

The partnership network includes 25 countries located across four continents, encompassing over two billion people. Through the transfer of technical expertise, these manufacturers will be prepared to produce and release products that are safe, effective, and affordable, with local marketing authorizations, and WHO prequalification, and ensure a sustainable supply to meet regional needs.

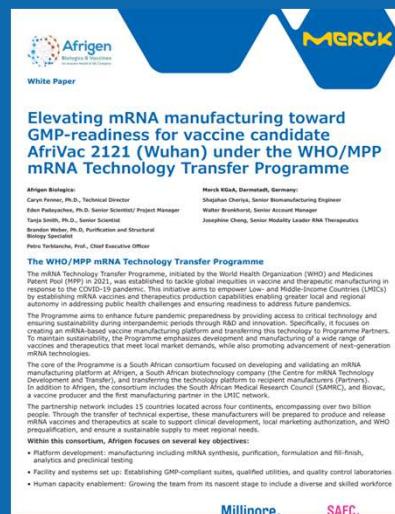
WHO Technology Transfer Programme focuses on several key objectives:

- Platform development: manufacturing including mRNA synthesis, purification, formulation and fill/finish, analysis and preclinical testing
- Facility and system set up: Establishing GMP-compliant suites, qualified utilities, and quality control laboratories
- Human capacity development: Growing the team from its nascent stage to include a diverse and skilled workforce

Millipore.
Expert mRNA/BioPharm
Products & CDMO Services

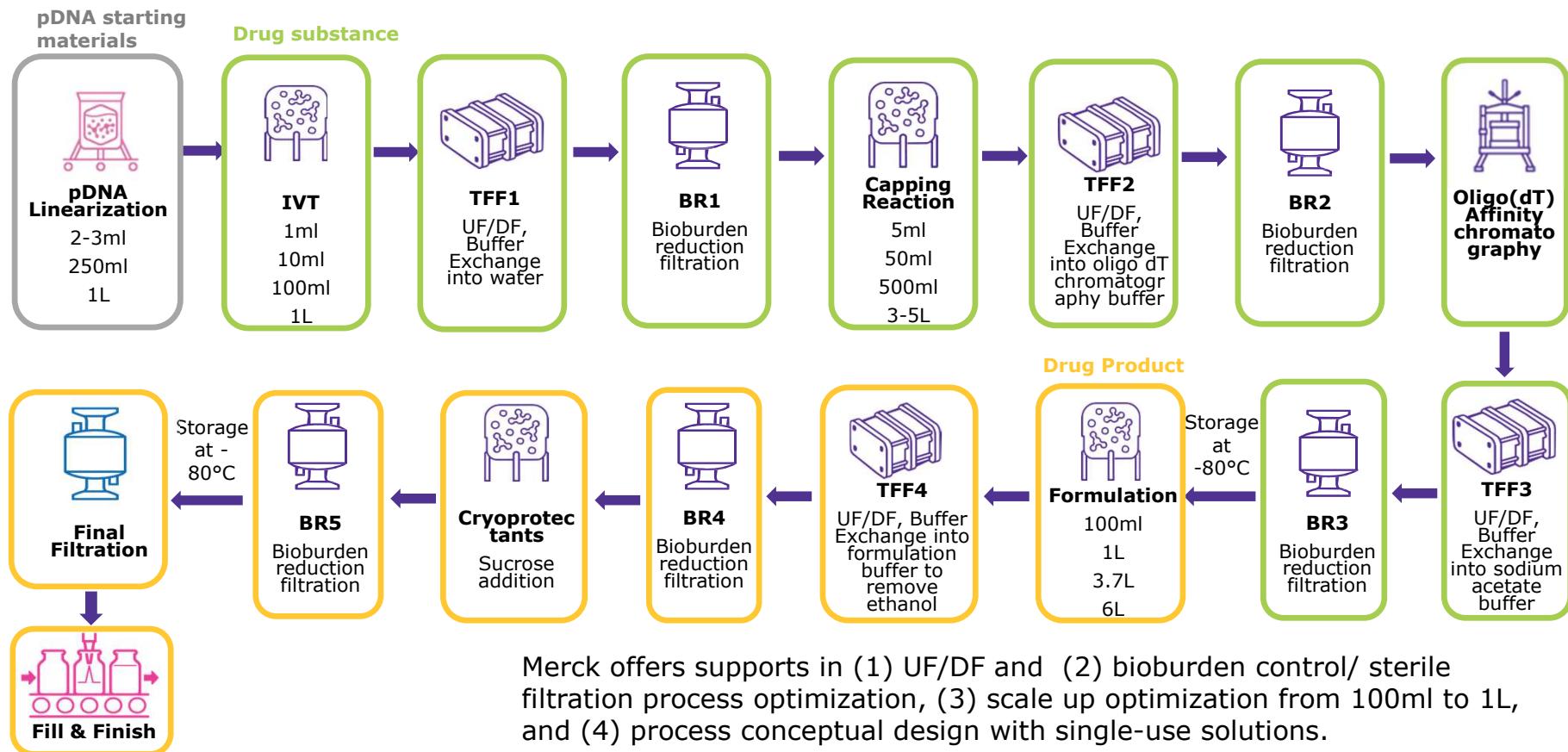
SACF.
Pharma & Biopharma Bio
Process Solutions

Key mRNA technical references and key integrated solutions. (Oct. 2025)



MERCK

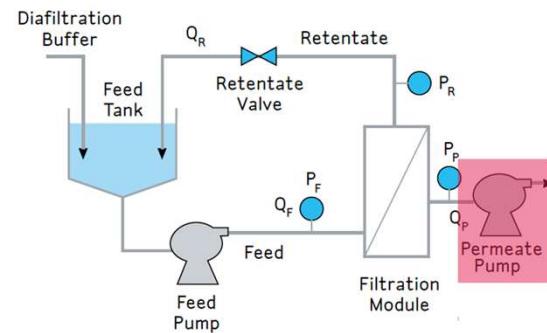
03


Technical sharing on recent publication

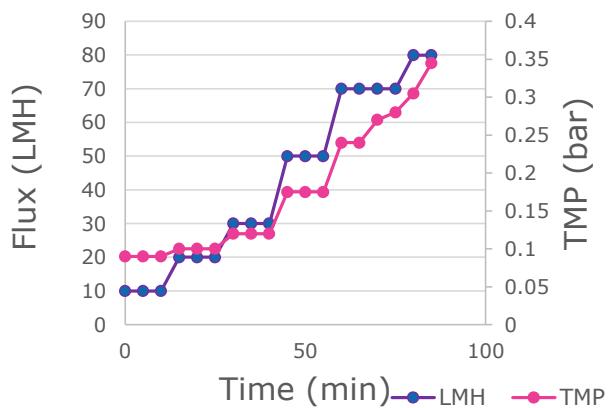
Millipore[®]
Expert Pharm/BioPharm
Products & CTDMO Services

MERCK

The mRNA production process developed by Afrigen with various scales tested and support offered by Merck to optimize the process towards GMP- Millipore® Ready process.


(Abbreviations: IVT = in-vitro-transcription, BR=bioburden reduction, TFF= tangential flow filtration, UF= ultrafiltration, DF= diafiltration.)

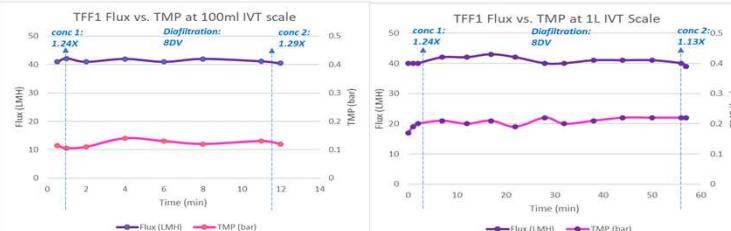
TFF operation options and parameters setting


TFF Filters with regenerated cellulose, 300KDa:

IVT volume	Device mem. area
20 mL (PD)	50 cm ²
100 mL	0.1 m ²
1 L	0.2 m ²

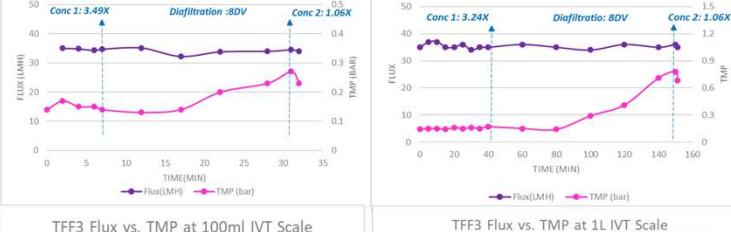
Permeate flux-controlled TFF:

Critical Flux Determination - 300KDa TFF Filter

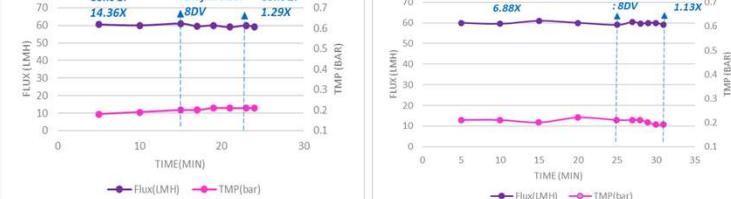

- The permeate flux control can be achieved using a second pump or a regulation valve to maintain a consistent permeate flux, minimize fouling and concentration polarization, and is particularly helpful for sensitive or high-fouling applications.
- Initially both 100KDa and 300KDa membrane was tested, finally 300KDa was selected due to its superior flux.
- Flux excursion stopped at a flux of 80 LMH, operating flux range of 35-60 LMH was recommended.

Scale up results for TFF1 to TFF4 from 100ml to 1L IVT scales demonstration robust scalability

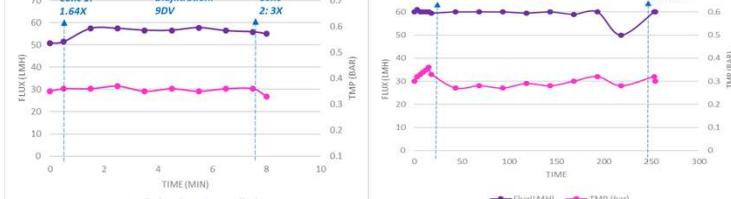
- Results demonstrate good scalability of the TFF steps across TFF 1 to TFF 4, scaling from 100ml to 1L IVT Scale.
- Concentration – diafiltration – concentration, to optimize outcome
- Monitor TMP, fixed feed cross flow, and selected permeate flux from 35 – 60 for different TFF steps.


TFF1

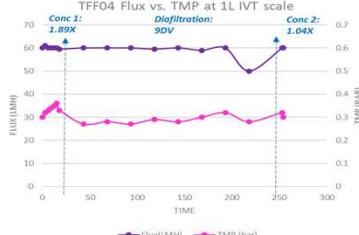
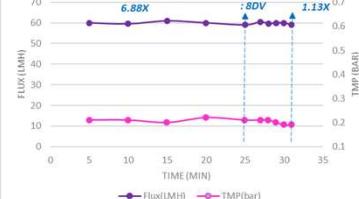
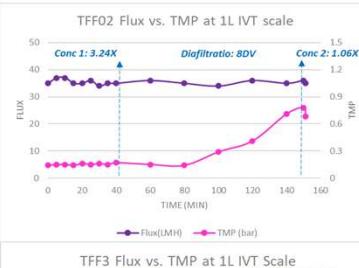
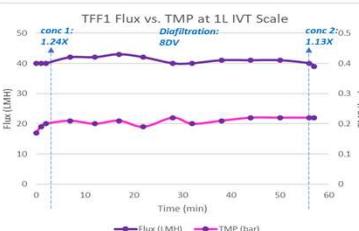
100ml IVT Scale


TFF2

TFF2 Flux vs. TMP at 100ml IVT scale


TFF3

TFF3 Flux vs. TMP at 100ml IVT Scale





TFF4

TFF4 Flux vs. TMP at 100ml IVT scale

1L IVT Scale

Millipore®

MERCK

Summary of TFF filtration results by average recovery and mRNA Integrity.

Millipore®

Description	100 mL drug substance (n=3)	1 L drug substance (n=3)
DRUG SUBSTANCE		
TFF filtration 1		
% Recovery – TFF1	83.33 ± 2.31 *	89.67 ± 4.51 **
% Integrity – input TFF1	78.62 ± 2.10	78.43 ± 1.71
% Integrity – output TFF1	76.63 ± 1.81	78.78 ± 2.07
TFF filtration 2		
% Recovery – TFF2	86.63 ± 2.36	95.68 ± 10.03
% Integrity – input TFF2	73.27 ± 3.92	73.24 ± 2.99
% Integrity – output TFF2	71.82 ± 0.66	70.03 ± 3.43
TFF filtration 3		
% Recovery – TFF3	91.53 ± 0.55	96.88 ± 3.01
% Integrity – input TFF3	79.82 ± 1.35	73.31 ± 5.26
% Integrity – output TFF3	76.07 ± 1.55	71.79 ± 2.91
Description	100 mL drug product (n=3)	3.7 L drug product*** (n=2)
DRUG PRODUCT		
TFF filtration 4		
% Recovery – TFF4	91.27 ± 4.97	100.25 ± 17.03
% Integrity – input TFF4	76.27 ± 1.50	71.7 ± 1.27
% Integrity – output TFF4	75.00 ± 2.07	68.40 ± 3.54

- Stable pre- and post-processing integrity results confirmed that the TFF process parameters did not shear the mRNA.
- In addition to the mRNA integrity not being affected by the TFF filtration, the process shows consistent high recoveries (>90% on average) for different scales and batches.
- These results demonstrate good scalability of the process and assure efficient concentration and buffer exchange.

MERCK

Summary of Bioburden filtration results by average recovery and mRNA Integrity.

Millipore®

Description	100 mL DS (n=3)	1 L IVT scale (n=3)
DRUG SUBSTANCE		
Bioburden reduction filtration 1		
% Recovery - BR1	98.21 ± 1.08	96.84 ± 8.18
% Integrity - input BR1	76.63 ± 1.81	78.78 ± 2.07
% Integrity - output BR1	76.63 ± 1.80	78.53 ± 3.06
Bioburden reduction filtration 2		
% Recovery - BR2	98.68 ± 0.79	86.45 ± 11.58
% Integrity - input BR2	71.82 ± 0.66	70.03 ± 3.43
% Integrity - output BR2	72.13 ± 1.03	71.02 ± 2.67
Bioburden reduction filtration 3		
% Recovery - BR3	98.82 ± 1.40	95.04 ± 5.05
% Integrity - input BR3	76.07 ± 1.55	71.79 ± 2.91
% Integrity - output BR3	76.42 ± 1.99	72.42 ± 1.12
Description		
100 mL drug product (n=3)		1 L scale * (n=2)
DRUG PRODUCT		
Bioburden reduction filtration 4		
% Recovery - BR4	98.57 ± 1.61	98.40 ± 0.37
% Integrity - input BR4	75.00 ± 2.07	68.40 ± 3.54
% Integrity - output BR4	76.40 ± 1.10	71.15 ± 2.90

- Recovery: Average recovery rates of above 95%, with minor losses attributed to filter wetting and flushing steps
- Integrity: mRNA integrity remained intact post filtration, with capillary gelectrophoresis (CGE) confirming over 78% average integrity.
- Flux and pressure: At a constant flow rate of 300 LMH, the filter exhibited stable performance, handling feed volumes with minimal resistance.
- Based on the consistent performance of the bioburden reduction filtration results, the sterilizing-grade Millipore Express® SHC 0.5/0.2 µm filter can be suitably adopted for the sterile filtration step when needed.

MERCK

Take Home messages

Millipore®

- 1 **Collaboration** formats can be **versatile**. Merck Life Science often collaborates through **scalable products** that include **quality dossiers, process optimization, scale-up implementation, technical training, and strategic partnerships**.
- 2 From the recombinant protein schistosomiasis vaccine and the viral vector platform rabies vaccine to COVID-19 mRNA vaccine candidates, **Merck has consistently been there** before and after the pandemic!
- 3 Merck supports the WHO/MPP mRNA Technology Transfer Programme with **global resources**, partners with the Center of Excellence **Afrigen** to optimize the platform, ensures that key purification steps are **GMP-ready processes**, and contributes to the goal of **empowering LMICs** to build a skilled workforce.

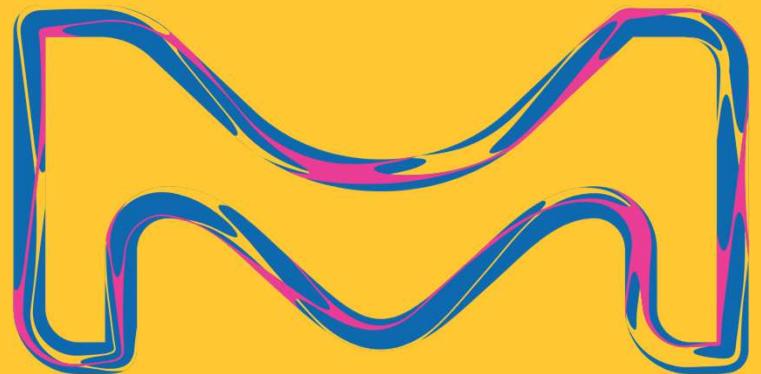
MERCK

Josephine Cheng

Josephine.cheng@merckgroup.com

Acknowledgement

Merck Team


Afrigen Team

The vibrant M, Millipore, Mobius, Millistak, Durapore, Emprove, Pellicon, Eshmuno, Fratogel, Natrix, Millipak, Benzonase are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates.

All other trademarks are the property of their respective owners.

Detailed information on trademarks is available via publicly accessible resources.

© 2025 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Vaccine ecosystem

Collaboration type and key benefits

Millipore®

Collaboration Type	Primary Goal	Phase Focus	Key Benefits	Typical Partners	Examples
Public-Private Partnership (PPP)	Equitable access via pooled procurement & coordination	Access & delivery	Portfolio aggregation, market shaping, equity	Govts, WHO, Gavi, CEPI, UNICEF, industry, civil society	COVAX Facility & AMC
Advance Purchase Agreements (APAs)	De-risk R&D/manufacturing; secure doses	Pre-market financing & supply	Speed, risk-sharing, affordability	Governments/EC + manufacturers	EU APAs (e.g., AstraZeneca)
Technology Transfer (WHO/MPP mRNA)	Build sustainable local mRNA manufacturing	R&D → manufacturing	Capacity building, autonomy, regional health security	WHO, MPP, Afrigen hub, LMIC manufacturers	mRNA TT hub-and-spokes (Afrigen)
CDMO Partnerships	Provide development, scale-up & GMP manufacturing	Development & manufacturing	Speed to clinic/commercial, access to capabilities	Sponsors + CDMOs	End-to-end CDMO engagements
Regulatory Pathways (WHO)	Expedite emergency access; enable UN procurement	Emergency & procurement	Faster access, regulatory convergence	WHO, NRAs, sponsors	EUL; Prequalification (PQ)
Pandemic Preparedness (CEPI)	Accelerate vaccine R&D for epidemic/pandemic threats	R&D & response	Funding, coordination, 100 Days Mission timelines	CEPI, funders, R&D orgs, regulators	CEPI & 100 Days Mission
Quality by Design (QbD)	Design robust product/process quality	Development/CMC	Reliable scale-up, regulatory-ready CMC	Sponsor CMC teams; regulators	ICH Q8(R2)
Pharmacovigilance (PV)	Ensure post-market safety & confidence	Post-market & programs	AEFI detection, risk management	WHO, NRAs, UMC, health systems	WHO PV; VigiBase

MERCK