AN OVERVIEW ON INFLUENZA VACCINES: LABORATORY ASSAYS FOR THEIR IMMUNOGENICITY EVALUATION
INFLUENZA

- Negative sRNA Virus
- Composed of 8 segments
- Causes 3 to 5 million cases of severe illness, and about 250,000 to 500,000 deaths each year

Four types of influenza viruses: A, B, C, and D.

TARGET INFLUENZA ANTIGENS FOR VACCINE PRODUCTION

IMMUNODOMINANT

HA

NA

IMMU Sub-DOMINANT
INFLUENZA HA

- Major surface glycoprotein (80%)
- Responsible for the attachment to sialic acid and internalization of virus into cells
- Responsible for the membrane fusion which allows vRNP release into the cell
- Mainly response against globular head (HA1)

Correlates of protection established (SRH and HAI)

- Laboratory marker of immune response that correlates with the protection from disease
NEURAMINIDASE (NA)

• The second most abundant glycoprotein on the Influenza virus surface (17% of the overall surface) after HA

• Expressed at a ratio 1:4 (40-50 NA and 160-200 HA spikes)

• Multiple roles:
 ✓ Allow the release of newly formed virions from the surface of the infected cell
 ✓ Enhance influenza infection by acting on glycoconjugates expressed on the cell surface
 ✓ Form complexes with sialic acids on the host cell surface

Antibodies against NA were found to decrease virus replication in lungs and reduce disease severity upon challenge
ANTIGENIC DRIFT

- Minor changes in HA and NA
- Occurs in Influenza A and B
- Antibodies are not effective against new mutation
- Causes a minor epidemic about every 2 years

ANTIGENIC SHIFT

- Major changes in HA and NA
- Occurs only in Influenza A
- Two different Influenza viruses enter cell and combine causing a new influenza strain
- Causes major epidemic about every 10-20 years

These two mechanisms of reassortment are responsible for annual **INFLUENZA EPIDEMICS** and for **INFLUENZA PANDEMICS** that occur when the human population results completely naive towards the new influenza virus generated.
CORRELATES OF PROTECTION

• Laboratory marker of immune response that correlates with the protection from disease

• An Immune response that is responsible for and statistically correlated with protection

... a correlates reflects a statistical relation between an immune marker and protection but does not necessary imply causal agency of the marker...

Plotkin and Gilbert, 2012

Surrogate correlate of protection

• An immune response that substitutes for the true immunological correlate of protection, which may be known or not easily measured

• i.e. non mechanistic correlate of protection, which does not cause protection but nevertheless predicts protection through its (partial) correlation with another immune response that mechanistically protects.

• Different –vaccine type and formulation, age, health status
CORRELATES OF PROTECTION

2.5 Antibody titration
All sera shall be assayed for anti-hemagglutinin antibody against the prototype strains by HI (Palmer et al., 1975) or SRH (Schild et al., 1975, Aymard et al., 1980) tests.
Positive and negative sera as well as reference preparations may be obtained from a reference laboratory.

2.6 Interpretation of results and statistics
Antibody titrations shall be done in duplicate; pre- and post-vaccination sera shall be titrated

REGULATORY REQUIREMENTS FOR SEASONAL INFLUENZA VACCINE LICENSURE (EMA, 1996)

- The seroconversion rate (SCR) (at least 4-fold increase in titers between pre and post vaccinated serum) (>40% or >30%)
- Geometric mean increase (ratio of pre and post vaccination) (>2.5 or >2)
- Proportion of subject with HI titre >40 (or SRH area >25mm²) (>70% or >60%)
6.1.1. Immunological assays and parameters to be assessed

The assessment of the immunogenicity of influenza vaccines is traditionally based on two tests, the haemagglutination inhibition assay [HI] that detect antibody directed against the HA antigen, and the single radial haemolysis assay [SRH]. Neither the HI nor the SRH assays are standardised. It has been shown that they are both subject to considerable inter-laboratory variability. In any one clinical

The Virus Neutralisation [VN] assay quantifies functional antibody. The assay is usually based on detecting the ability of human serum at various dilutions to prevent viral replication in microplates (i.e. using a microneutralisation technique [MN]). It is essential that neutralizing antibody titres are determined in all studies, at least in a representative subset of the study population and preferably in

It is recommended that studies should monitor the quantity and quality of T-cell responses. For example, antigen-specific T-cell frequencies should be estimated (e.g. including Th1, Th2, T regulator cells, memory T cells and relevant cytokines). In addition, a thorough analysis of CD4+ and CD8+ responses, as well as the activation of memory B cells, would allow for a better characterisation of the effect of vaccination on antibody responses and clinical protection.

Applicants may consider evaluating anti-neuraminidase NA antibodies at least in randomly selected subsets. If conducted, the assay used should be validated and should be performed in appropriately experienced laboratories.
EVALUATION OF INTRAMUSCOLAR AND INTRADERMAL INFLUENZA VACCINES

HAI – Haemagglutination Inhibition
- Suitable for screening a large number of samples
- Detects Ab that bind around receptor-binding site in globular head and block agglutination
- Good correlation with MN for seasonal strains
- BSL2 lab need also for pandemic strains
- EMA and FDA Approved

SRH – Single Radial Haemolysis
- Suitable for screening a large number of samples
- Detects Ab that bind around the virus and fix the complement (not IgG2)
- Good correlation with MN for pandemic strains
- BSL2 lab need also for pandemic strains
- EMA Approved

MN – Virus Neutralization
- Titration of functional antibody only
- Gold Standard for confirmation
- High containment (BSL3plus) needed in case of pandemic strains
- Detects Ab that bind around globular head and block virus attachment/entry
- No correlate of protection established
Evaluation of Intramuscular and intradermal influenza vaccines

ELISA – Enzyme Linked ImmunoSorbent Assay
- Suitable for screening a much larger number of samples
- Automation is possible
- No correlate of protection established
- Use of HA is preferable HA1 is better
- Suitable to detect IgG, IgM, IgA in serum and nasal washes

Neuraminidase Assays (for NA antibody)
- Several assays available
- Should be better define role on NA-Ab in protection
- BSL2 lab need also for pandemic strains
- No correlate of protection established

Cell-Mediated Immunity (CMI)
- Identification of subpopulations within of stimulated PBMCs
- Simultaneous analysis of several extracellular and intracellular cytokines
- No correlate of protection established
- ICS and ELISPOT available
The HAI titer is the serum dilution which induces 50% of hemagglutination, the reciprocal of this serum dilution is the HAI titre.

-Correlate of protection:
HAI titre ≥ 40 for seasonal vaccines

HAI – as a “correlate” established in efficacy trials long time ago
Hobson et al, 1972
Single Radial Haemolysis (SRH) is routinely used for the detection of influenza-specific (and rubella) IgG antibody.

- SRH has been shown to be sensitive, specific, and reliable.
- SRH plates are usually prepared in the laboratory using commercially available reagents.
- Test sera are placed in wells on a plate containing agar with influenza antigen-coated RBC and guinea-pig complement.
- The presence of influenza-specific IgG is detected by the lysis of influenza antigen-coated RBC mediated from GUINEA-PIG complement.
- The zone of lysis around the well is dependent on the level of specific antibody present.

• The size of the haemolysis zone around a well containing serum is measured in mm. The diameter of haemolysis is then transformed into area.
• If the area size is greater than 25 mm2, then the subject is considered to be seroprotected in accordance with EMA guidelines.
• If the area size is ≤ 4 mm2, then the subject is considered negative according to EMEA guidelines.

Positive control

SINGLE RADIAL HAEMOLYSIS (SRH)

Area = 95.033 mm2
High Positive – Seroprotection

Area = 28.274 mm2
Low Positive – Seroprotection

Area = 78,540 mm2
High Positive - Seroprotection

Area = 3.997 mm2
Negative

Diam = 2.256 mm
Area = 3.997 mm2
Microneutralization Assay – CDC protocol

1. Treat sera
 56°C 30 min/RDE

2. Add Sera

3. Dilute sera

4. Add Virus
 100 TCID₅₀/well

5. MDCK Cells
 1.5x10⁴ cells/well

6. Fix cells and run NP ELISA

16-22 hr @37°C

Different read-out available

From: Rowe T. J Clin Microb 1999
Live Attenuated Influenza Vaccine - LAIV

Trivalent intranasal spray vaccine
Made with Live-Attenuated viruses that are able to replicate efficiency only at temperature present in the nasal mucosa

Cold-Adapted Virus

The strains are generated by reassortment, and consist of the six internal genes from a cold adapted, temperature sensitive master strain, with the HA and NA genes from the circulating strains. (Palese et al. 2006)

Preferred Vaccine for young children ➔ from 2 to 16 years
More immunogenic in children than in adult if compared with IIV
Mimic a natural infection – Elicit a more mucosal (local) immune response

Alternative ways used to induce mucosal immunity:

- Intranasal vaccination using inactivated whole or split IV
- Sublingual administration of adjuvanted influenza vaccine
- Novel type of LAIV – by depleting the NS1 gene –
ELISA ASSAY FOR IgA DETECTION

The standardization of the mucosal sample is an important step, since the mucus and protein concentration of nasal washes varies widely between individuals (but also within the same) depending on several factors such as:

- Time of sampling
- Age: Children VS Young VS Elderly
- History or concurrence of nasal disease
- Aspiration efficacy

STANDARDIZATION USING TOTAL PROTEIN OR TOTAL IgA PRESENT IN THE SAMPLE