Evaluation of Bacterial vaccines

Eleonora Molesti, BSc, MSc, PhD Senior Director at VisMederi

Overview

- Bacteria are ubiquitous,
- Only a small percentage cause disease,
- Bacterial infections have a large impact on public health,
- Generally, bacterial infections are easier to be treated than viral infections

Burton's Microbiology for the Health Sciences, 8th edn., ch. 11. Baltimore: Lippincott Williams and Wilkins

The role of enviroment and mode of transmissions

Reservoirs	Disease examples	Mode of transmission	Disease examples
Human	Typhoid fever, syphilis	Contact	Streptococcal impetigo (skin-to-skin),
Animai	(rabbits), Lyme disease (white-footed mice)		gonorrhea (mucus membrane-to-mucus membrane), <i>Salmonella</i> (fecal–oral), syphilis
Arthropods	Rocky Mountain spotted fever (ticks), endemic		(transfusion)
	typhus (fleas), scrub typhus (mites)	Airborne	Tuberculosis, Q fever, legionella
Air	Tuberculosis	Droplet	Pertussis, meningococcus, Haemophilus influenzae
Food	Vibrio, E. coli 0157:H7	Vectors	Lyme disease (tick), Shigella (fly) epidemic typhus (lice), bubonic plaque (fleas)
Water	Shigella, Legionella	Vehicular	Campylobacter (food), trachoma (fomites)

Doron S and Gorbach SL., Elsevier, 2008

- Bacterial can be trasmitted by several mechanisms and they have been adapted to survive in water, soil, food and elsewhere.
- Some bacteria are endemic in certain geographic regions and nonexistent in others,
- Some bacteria infect vectors such animals or insects before being trasmitted to humans,
- Impact of **overflow,** a phenomen relevant for zoonotic diseases such as Lyme Disease (caused by Borrelia sp.)

Prevention of bacterial infections

www.thtraining.co.uk

The complexity of immunological responses

Osterloh, Vaccines 2022, 10, 751

- Bacteria are complex organisms and are more difficult targets,
- They possess several antigens whose immunogenic potential is often unknown,
- Unclear if antigens can elicit longlasting immunity
- Intracellular vs extracellular bacteria
- non-living whole cell antigens or subunit vaccines are not able to elicit T-cell mediated responses.

Current vaccine formulations development

Micoli et al. Nature Reviews, Microbiology, May 2021

- **Reverse vaccinology** (its first application for Neisseria meningitidis group B, enables the selection of potential vaccines on the basis of the genomic information of a bacterial strains)
- **Structural vaccinology** (Structural information combined with immunological and functional characterization of microbial antigen can be used to structurally design new candidate vaccine antigens. E.g., Monoclonal Ab selection)
- **OMV** (outer membrane vesicles) and **Generalised modules for membrane antigens** (GMMA) (Naïve outer membrane vesicles contain natural bacterial surface-exposed proteins in the correct conformation)
- Bioconjugation (covalent linking of a bacterial polysaccaharide to a carrier protein e.g. Haem Influenza,
- Men C,A and ACWY), Penumococcus Serotypes 7, 10, 3 and Salmonella Ent.)

Critical aspects to be considered for clinical development:

- Selection of suitable target population for efficicacy trials
- Biomarkers for identifying correlates of protection
- Lack of a known correlate of protection is a major limitation in the ability to identify a protective vaccine
- <u>Measure of functional immunity is critical for vaccine evaluation</u> and it is required by regulators for new vaccine licensing

For the three main bacterial pathogens that cause bacteremic disease—Haemophilus

influenzae type b (Hib), pneumococci, and meningococci—the correlates are opsonophagocytic or bactericidal antibodies, although binding antibodies are useful as surrogates.

Vaccine	Test	Level required	Reference(s) ^a
Anthrax	Toxin neutralization	1,000 IU/ml	87, 136, 149, 170, 191
Diphtheria	Toxin neutralization	0.01–0.1 IU/ml	14, 92
Hepatitis A	ELISA	10 m10/mi	45, 110
Hepatitis B	ELISA	10 mIU/ml	66
Hib polysaccharides	ELISA	1 μg/ml	74
Hib conjugate	ELISA	0.15 μg/ml	73
Human papillomavirus	ELISA	ND^b	140
Influenza	HAI	1/40 dilution	50, 171
Japanese encephalitis	Neutralization	1/10 dilution	63
Lyme disease	ELISA	1,100 EIA U/ml	128
Measles	Microneutralization	120 mIU/ml	24, 120, 158
Meningococcal	Bactericidal	1/4 (human complement)	96
Mumps	Neutralization?	ND	189
Pertussis	ELISA (toxin)	5 units	25, 173, 180.
Pneumococcus	ELISA; opsonophagocytosis	0.20-0.35 µg/ml (for children); 1/8 dilution	68, 81, 167
Polio	Neutralization	1/4–1/8 dilution	41, 95, 139
Rabies	Neutralization	0.5 IU/ml	196,
Rotavirus	Serum IgA	ND	49, 67, 104, 199, 200
Rubella	Immunoprecipitation	10–15 mIU/ml	2, 27, 53, 99, 141, 169
Tetanus	Toxin neutralization	0.1 IU/ml	13, 37,
Smallpox	Neutralization	1/20	89, 93, 139, 160
Tick-borne encephalitis	ELISA	125 IU/ml	77
Tuberculosis	Interferon	ND	46
Varicella	FAMA gp ELISA	$\geq 1/64$ dilution; ≥ 5 IU/ml	195
Yellow fever	Neutralization	1/5	79, 97
Zoster	CD4 ⁺ cell; lymphoproliferation	ND	190

TABLE 2. Quantitative correlates and surrogates of protection after vaccination

Plotkins, Clinical and Vaccine Immunology July 2010

Manual-based Serum Bactericidal Assay (SBA)

Based on the ability of antibodies present to kill the bacteria of interest. The killing is complement-mediated.

The serum killing activity is evaluated by plating the SBA reaction mix and counting the survival bacterial colony forming Units (CFUs) at each serum dilution. Bactericidal titers are calculated as the reciprocal of serum dilution that kills 50% of bacteria

Luminescence-based Serum Bactericidal Assay (L-SBA)

https://www.frontiersin.org/files/Articles/1171213/fcimb-13-1171213-HTML/image_m/fcimb-13-1171213-g001.jpg Table 6. Comparison between L-SBA and traditional CFU-based assay in terms of procedure advantages.

	L-SBA	traditional SBA with manual counts
Total time of execution	6 hours ¹	1.5 working day ²
Data acquisition	2 minutes/SBA plate	2–3 hours/SBA plate ²
Reproducibility	higher operator independency	lower operator independency
Assay throughput	1 operator/day: 24 individual sera in triplicate (6 SBA plates total)	1 operator/1.5 day: 12 individual sera in single (1 SBA plate ²)

¹to execute 1 set of 6 SBA plates

²to execute 1 SBA plate, plating each reaction well in 1 full agar plate: 1 SBA plate corresponds to have 96 agar plates

doi:10.1371/journal.pone.0172163.t006

- Bacteria surviving the complement-mediated ab dependent killing are detected by measuring their metabolic ATP via the use of a reagent called Bac titer (Promega).

- SBA reaction is not plated on the agar plate

- The signal obtained is proportional to the ATP present in SBA reaction which is directly proportional to the number of bacteria not killed by SBA.

- Bactericidal titer can be calculated by using a luminometer

Opsonophagocytosis (OPA)

to use the
dies detectionThe opsonophagocytic titer is calculated as the
reciprocal of the serum dilution killing the 50% of colony
(respect to the control)

TH ANTIBOR

CD

It is based on the bacteria complement mediated opsonizzation and killing

This assay use baby rabbit serum as the complement source and human promyelocytic cell line HL-60 cells as the phagocytic cells.

OPA measures the biological activity of serum antibodies, therefore it is believed to be highly relevant in assessing vaccine efficacy.

Its experimental set up involves four critical components (bacteria, serum antibodies, complement, and phagocytic cells).

Standard-, Flow Cytometric based-, Fluorescent- and Multiplex- OPA exist.

Vismederi started the process of set-up to use the standard OPA for anti-S. *pneumoniae* antibodies detection

Table 1. Advantages and disadvantages of currently available functional assays.

Assays	Advantages	Disadvantages
Traditional Killing OPA/MOPA pneumococcal-specific	• Standardised gold-standard assay	 Labour intensive Time consuming Can have high repeat rate ^
Fluorescent OPA/MOPA pneumococcal-specific	 Single-day assay Eliminates colony-counting Semi-automation 	 Non-standardised output Requires specialised equipment (i.e., flow cytometer or fluorometer) Variable results for some serotypes
Serum Bactericidal Assay Hib and meningococcal	Does not require phagocytic cell line	 Non-standardised reagents Does not measure opsonophagocytic activity Time consuming
Antibody Avidity Assay pneumococcal, Hib and meningococcal	Easy to performDoes not require live bacteria	 Non-biological assay Non-standardised method (dilution vs. elution)

Vaccines 2021, 9, 677

Table 2. Correlates of protection for pneumococcal, Hib and meningococcal vaccines.

Vaccines	Correlates of Protection	
	ELISA	
DCV	>0.35 µg/mL	
FCV	OPA	
	≥ 8 titre	
	ELISA	
	Long term: $\geq 1.0 \ \mu g/mL$	
Hib	Short term: $>0.15 \mu g/mL$	
	SBA	
	\geq 4 titre	
	SBA	
Meningococcal * [[Senza titolo]]	rSBA (\geq 8 titre) or hSBA (\geq 4 titre)	

Need of assay standardisation for functional assays

WVISMEDERI

ANALYSES FOR LIFE IMPROVEMENT

11

THANKS FOR YOUR ATTENTION

