Democratizing Biomanufacturing using Perfusion Fermentation

Laura Crowell, PhD Director R&D, Sunflower Tx DCVMN Webinar August 8, 2023

Sunflower is an early-stage company delivering next-generation biomanufacturing solutions to global innovators for protein medicines, vaccines and food.

> Just like anyone can grow sunflowers anywhere, our solutions are easy to use and empower anyone to efficiently make proteins anywhere.

Diverse Industries Are Producing Proteins & Need Manufacturing Solutions

Biopharma Companies Drug Discovery Drug Development Process Development Manufacturing

Research Institutions Protein Design & Eng. Synthetic Biology Metabolic Engineering Vaccine/Drug Discovery

Biotech Companies Animal Health Cosmetics Foods & Nutraceuticals Materials Public Sector/Gov't Vaccine/Drug Security Biologic Defense Pandemic Preparedness Workforce Training

BOLD = Sunflower's Existing Traction

Conventional Biomanufacturing Capacity Requires Significant Upfront Resources & Highly Skilled Workforce

DCVMN Webinar - August 8, 2023

PC: Novo Nordisk

Our Goal: Make Protein Manufacturing More Accessible

Accessibility = Easy to obtain +

- Lower Cost
- Small Footprint
- Deployable

- Easy to use
 - Simple
 - Automated
 - Efficient
 - Flexible

Host organism and manufacturing approach impact cost, simplicity, efficiency and flexibility

Eukaryotic Microbes are Simple and Efficient Hosts for Protein Manufacturing

Eukaryotic Microbes Enable Process Simplicity

	Bacteria (<i>E. coli</i>)	Eukaryotic Microbes (<i>P. pastori</i> s)	Mammalian Cells (<i>CHO</i>)
Protein Secretion			
Initial Purity	<<50%	>70%	<50%
No Endotoxin			
No Adventitious Agents			
Process Complexity	HIGH	LOW	MED

Eukaryotic Microbes Enable Lower Cost

	Bacteria (<i>E. coli</i>)	Eukaryotic Microbes (<i>P. pastori</i> s)	Mammalian Cells (<i>CHO</i>)
Process Complexity	HIGH	LOW	MED
Doubling Time	<1 HR	2-3 HR	>12 HR
Facility Utilization	POOR	GOOD	POOR

Eukaryotic Microbes Enable Lower Cost

	Bacteria (<i>E. coli</i>)	Eukaryotic Microbes (<i>P. pastori</i> s)	Mammalian Cells (<i>CHO</i>)
Process Complexity	HIGH	LOW	MED
Doubling Time	<1 HR		>12 HR
Facility Utilization +	POOR	GOOD	POOR
Raw Material Cost	LOW	LOW	HIGH

Eukaryotic Microbes Enable Lower Cost

	Bacteria (E. coli)	Eukaryotic Microbes	Mammalian Cells (сно)
Process Complexity	HIGH	LOW	MED
Doubling Time	<1 HR	2-3 HR	>12 HR
Facility Utilization	POOR	GOOD	POOR
Raw Material Cost	LOW	LOW	HIGH
<u>Cost of Goods</u> <u>Manufactured</u>	MED	LOW	HIGH

Continuous Manufacturing Enables Efficiency, Quality and Productivity

Continuous Manufacturing Enables <u>Efficiency</u>

Bioreactor volume required to produce 1 kg of IgG1 in CHO in 30 days*

Continuous manufacturing reduces footprint by 7-fold

*Based on data from Walther et. al., Biotechnology Journal. 2018

Continuous Manufacturing Enables <u>Quality</u>

Consistent cell environment leads to higher cell viability and product quality

*Based on data from Walther et. al., Biotechnology Journal. 2018

Continuous Manufacturing Enables <u>Productivity</u></u></u>

Instantaneous protein titer is not a

complete representation of protein produced for continuous processes

Continuous processes run longer and

produce more total protein

Instantaneous Protein Titer (mg/L)

Sunflower THERAPEUTICS Total Protein (mg)

200

Continuous Manufacturing Enables <u>Productivity</u></u></u>

Space-Time Yield is a metric for normalized comparison

Space-Time Yield = Mass of Protein per Bioreactor Volume per Cultivation Day

Space-Time Yield (mg/L/day)

Continuous manufacturing enables significantly higher space-time yields

Perfusion Fermentation: Continuous Manufacturing for Eukaryotic Microbes

Historical Challenges To Continuous Manufacturing for Microbes

Legacy Method: Chemostat

Limited achievable cell mass due to constant cell harvest

Conventional Perfusion (used with CHO)

Removes cells from the bioreactor environment leading to starvation for microbes

Sunflower's Technology Enables In-Vessel Perfusion for Eukaryotic Microbes

Benefits of In-Vessel Perfusion

- Cells never removed from bioreactor environment
- Healthier, more consistent cell culture
- Longer campaigns
- Ultra high cell mass achievable and maintainable
- Continuous harvest of secreted protein

*Cell Retention Device

Daisy Petal[™] Single-Use Bioreactor System: Perfusion fermentation for eukaryotic microbes

EFFICIENT PRODUCTION IN A SMALL FOOTPRINT

- Bench-top sized but **produces like larger reactors** (up to grams protein in 1-2 weeks from 1L working vol.)
- Unique single-use structured consumable for intuitive installation by non-expert users and rapid flexibility
- Custom software enables fully automated operation
- Immediately deployable just add cells & process fluids

Daisy Petal[™] Single–Use Bioreactor System: Perfusion fermentation for eukaryotic microbes

EFFICIENT PRODUCTION IN A SMALL FOOTPRINT

- Bench-top sized but **produces like larger reactors** (up to grams protein in 1-2 weeks from 1L working vol.)
- Unique single-use structured consumable for intuitive installation by non-expert users and rapid flexibility
- Custom software enables fully automated operation
- Immediately deployable just add cells & process fluids

EARLY ACCESS UNITS DELIVERED SUMMER 2022

"The Daisy Petal is really simple to use. I knew exactly how to get started with the system and consumables."

 Customer in Petal Early Access Program with no previous bioprocess experience

Perfusion Fermentation Sustains Production of High-Quality Proteins

G-CSF

Std @ 0.05, 0.1 mg/mL *Fed-batch processes typically end here.

CONTINUOUS MICROBIAL PRODUCTION IS MORE EFFICIENT THAN BATCH

- >1.2 grams (4,200 dose equivalents) of unpurified G-CSF produced in 9 days in 1 L working volume reactor
- Space-Time Yield: >130 mg/L/day (>500 mg/L fed-batch titer)
- Process ran 4 days longer than conventional batch cultivation
- Perfusion fermentation enabled by proprietary in-vessel cell retention device

Daisy Petal™ Simplifies Fermentation Optimization

A 3 LEVEL, 2 FACTOR FULL FACTORIAL DOE REQUIRES 9 CONDITIONS

Continuous Operation Links Parameter Testing

Hours

0		Start New Recipe Step Controllers automatically adjust to new set points
		Perfusion operation turns over fluid in reactor
		Cells adapt to new steady state
20		
		Collect samples at new steady state
24	•	Repeat for new conditions

Variable Process Parameters

- pH
- Dissolved oxygen (DO)
- Temperature
- Perfusion Rate (Feeding)
- Carbon input (Feeding)
- Cell Bleed Rate

A single experiment can test multiple process conditions

Early Access Customers Demonstrate Benefits of Perfusion

MAB PRODUCTION TESTED WITH HIGH BIOMASS (~600 WCW) AT MULTIPLE GROWTH RATES

Diverse Proteins Produced Using Daisy PetalTM

Crowell et. al. Nat. Biotechnol. 2018; Dalvie et. al. Microb. Cell Fact. 2021; Dalvie et. al. PNAS 2021; Crowell et. al. Biotechnol. Bioeng. 2021

Dahlia PetalTM is Equivalent to 200L Batch Bioreactor

15L Working Volume Can produce **100 grams protein per week** in <20 m²

SCALE-UP TO DAHLIA PETAL[™] RESULTS IN CONSISTENT SPACE-TIME YIELDS

- G-CSF successfully produced during hardware testing
- >5 grams G-CSF produced in only 4 days
- Space-Time Yield: >70 mg/L/day*
- *Space-Time Yield from Daisy Petal[™] @ 4 days: 77 mg/L/day

Std @ 0.05, 0.1 mg/mL

Benefits of Perfusion Fermentation with Sunflower Systems

Continuous - Overcomes limits of batch production for lower costs (both capital & operational)

Automated - Custom software for 'hands-free' operations

Intuitive - Designed for users with diverse backgrounds in production

Sustainable - Reduced waste (particularly cleaning waste)

Flexible - Accommodates a range of operations and proteins

Deployable - Ready for installation and immediate use in many environments

Efficient - More protein for lower cost and less space

Perfusion Fermentation Enables End-to-End Automated Biomanufacturing

Steps Needed for End-to-End Biomanufacturing

1. Expression

Protein is produced by cells

2. Purification

Protein is separated from impurities

3. Formulation

Protein is put into a buffer safe for administration

Steps Needed for End-to-End Biomanufacturing

1. Expression

Perfusion Fermentation

2. Purification

Straight-through Chromatography

3. Formulation

Tangential Flow Filtration

Straight-through Chromatography Enables Intensified Manufacturing

Straight-through chromatography

To Waste

Straight-through Chromatography: 2-column example

Conventional Chromatographic Staging

Straight-through Chromatography: 2-column example

Conventional Chromatographic Staging

Straight-through Integrated Staging

Conventional Processes are Lengthy

G-CSF in E. coli (18 Step conventional process)

Sunflower Integrated Processes are Efficient

G-CSF in E. coli (18 Step conventional process)

Crowell et al., Nat. Biotechnol., 2018

Perfusion fermentation and straight-through chromatography lead to a 60% reduction in the number of manufacturing steps

Sunflower Systems Use Similar Processes for Many Proteins

Sunflower's End-to-End Manufacturing Systems: Simple hardware to enable capacity for anyone

R&D/Process Development

Automated Protein Bulk Production (up to grams per week)

Efficient Commercial Production

Automated Protein Bulk Production (up to 10 kg annually in <50m²)

Sunflower End-to-End Systems: Breakthrough automated small footprint commercial protein manufacturing

INTEGRATED SYSTEM FOR CONTINUOUS PRODUCTION OF PROTEIN BULK

End-To-End: Integrated operations for expression, purification, formulation and collection

Fully Automated: Add cells & process fluids, push start, & collect protein bulk for a product in just days

Multi-Product: Closed single-use design for agility and flexibility (\mathbf{b})

"Move-In" Ready: Operates in many different types of spaces and environments

UP TO 10 KG ANNUAL PROTEIN OUTPUT IN <50m² WITH MULTI-PRODUCT FLEXIBILITY

High-Quality Protein Generated on Both Systems

DAISY & DAHLIA SYSTEMS DEMONSTRATE MULTI-PRODUCT CAPABILITIES USING PROCESSES TRANSFERRED FROM ONE TO THE OTHER

G-CSF (filgrastim)

SARS-CoV-2 RBD (subunit vaccine)

*Processes deployed for both molecules were not optimized for yield (Drafted for equipment demonstrations only)

Bulk Drug Substances Produced on Systems are Similar

DAISY & DAHLIA SYSTEMS PRODUCED CLINICAL QUALITY BULK DRUG SUBSTANCES IN SIMPLE MANUFACTURING ENVIRONMENTS IN < 1 WEEK

Protein	System	Dose Equivalents	Host-cell	Host-cell Brotoin	Bioburden*
	USEU	cquivalents	(ng DNA/mL)	(total protein)	(CFU/plate)
G-CSF		~100	<10	< 0.1%	0
		>1,000	<10	< 0.1%	0
COVID-19 Vax Subunit		>2,000	<10	< 0.1%	0
		>50,000	<10	< 0.1%	0

*Performed by third-party contractor according to the Compendial method USP 61 microbiological examination of Non-Sterile Products (Microbial enumeration test)

Sunflower Systems Maximize Facility Utilization

STATE-OF-THE-ART SINGLE-USE PILOT PLANT

SUNFLOWER (Many Product Classes)

0 1		1	1		2 3	
Vaccine 1	mAb 1	Vaccine 2	Cytokine	Vaccine 3	Hormone	

MONTHS

MULTI-PRODUCT CAPABILITY AND AGILITY ENABLES LOWEST MANUFACTURING COSTS

Projected Annual Product Output From Our Approach

DCVMN Webinar - August 8, 2023

THERAPEUTICS

Sunflower's Vision for Democratization of Protein Supply

We believe enabling regional manufacturing capacity for protein products can promote prosperity everywhere

ACCESSIBLE SOLUTIONS POWER **NEW INNOVATIONS FUEL** MANUFACTURING CAPACITY **NEW PRODUCTS & BUSINESSES REGIONAL MARKET EXPANSION GROWS TO MEET DEMAND**

Sunflower Can Help <u>You</u> Explore the Benefits of Integrated Manufacturing using Eukaryotic Microbes

Hardware Access

- Daisy Petal[™] perfusion fermentation system commercial release in early 2024! Accepting Pre-Orders Now
- Seeking early access customers for evaluation of Dahlia PetalTM
- Seeking early access customers for evaluation of end-to-end Dahlia[™]

Contract Research Services

- Strain, media and process development in eukaryotic microbes
- Demonstrations on Daisy Petal[™],
 Dahlia Petal[™], or end-to-end Dahlia[™]

Acknowledgements

Sunflower Team

Alexandra Bonnyman Devin Morrison

Jodie Crowley Benjamin Fagin Adrian Foell Minh Le Sophie Lee Tim Lorgeree **Kerry Love** Martin Rochefort
Michael Sheets
Akshada Shinde
Patrick Spooner
Mary Kate Tracey
Nikhil Unde

Talk to Kerry and Alex at DCVMN Annual Meeting in Cape Town, South Africa!

SCAN ME

Visit us at: www.sunflowertx.com

THERAPEUTICS

Contact: laura@sunflowertx.com