Chromatographic purification of plasmid DNA

DCVMN Conference Pune, India; 22nd Oct , 2022

Subhasis Banerjee, Ph.D. Principle Application Expert, APAC Bioprocessing

pDNA purification challenges & considerations Typical pDNA process flow

pDNA purification challenges & considerations Unique challenges of pDNA purification

- Similarity of product and contaminants (genomic DNA (gDNA), endotoxin, RNA, plasmid isoforms) leads to **low resolution separation**.
- Feed often **highly viscous**, complicating downstream processing.
- Shear sensitivity
- Lack of platform process and integrated solutions

pDNA purification challenges & considerations Chromatography - Common approaches

- **Goal:** Separate supercoiled (ccc) plasmid from oc-/linear isoforms and residual impurities (HCP, nucleic acid, endotoxin) by charge, size or hydrophobicity
- Combination of Anion exchange and Hydrophobic interaction

1 Anion Exchange Chromatography (AEX)

- Applicable for capture, intermediate and polishing
- Weak AEX resins give highest recovery and selective impurity removal
- Separate plasmid from proteins, RNA and gDNA and removing endotoxin
- Separation of plasmid isoforms difficult

7 Hydrophobic Interaction Chromatography (HIC)

- Works by salt promoted binding ($\approx 2.5 \text{ M NH}_4\text{SO}_4$)
- **Separate isoforms**: Supercoiled pDNA is less hydrophobic than RNA, oc- and linear- plasmid forms and denatured gDNA

AEX Capture Chromatography - Test Overview and Methods

Clarified lysate conditions:

- 6.5 kbp pDNA, 24 μg/mL titer. 1.5M K-acetate buffer, pH 5.3, 86.9 ms/cm
- Nucleic acid content: 3.8% pDNA, 96.2% RNA. Endotoxin content: 380,000 EU/mg pDNA

Step	Mobile Phase	Membrane Volumes	Flowrate	
Equil	1M K-Acetate + 150 mM NaCl, pH 5.0 (75 mS/cm)	50 MV	10 MV/min	
Load	Clarified, sterile filtered lysate pH 5.2	11 mg pDNA/mL membrane	10 MV/min	
Wash	1M K-Acetate + 150 mM NaCl, pH 5.0 (75 mS/cm)	20 MV	10 MV/min	
Elute	100 mM Tris, pH 9 + 1M NaCl	50 MV	5 MV/min	
CIP	1M NaOH + 2 M NaCl	20 MV	10 MV/min	

Analytics:

- * DNA and RNA content assessed by HPLC (Tosoh DNA-NPR method) $^{\rm 1}$
- Endotoxin content assessed by Charles River Endosafe assay
 - ¹ Urthaler 2005

Impact of NaCl supplementation on RNA clearance

Capture pDNA while impurities (RNA) flowthrough

AEX Capture Chromatography - Results

100% 100% 11 90% 88% 80% 70% 8 60% 50% 40% 30% 36% 20% 10% 0% 75 0 35 NaCl Supplementation (mM)

Impact of Salt Supplementation on Capacity, Purity, Recovery

- pDNA Binding Capacity (mg pDNA/mL membrane)
- pDNA purity (% of total nucleic acids)
- pDNA Recovery

35 mM NaCl supplementation offers best balance of capacity, purity, recovery:

- Capacity = 8 mg pDNA/mL membrane
- Nucleic acid purity = 77% pDNA
- pDNA recovery = 88%
- Endotoxin content = 3,100 EU/mg pDNA

Merck

AEX Capture Chromatography- Wash Strategy

Control	Wash

Detergent Wash

Step	Mobile Phase	Step	Mobile Phase		
Equilibration	1M K-Acetate + 150 mM NaCL pH 5.0 (75 mS/cm)	Equilibration	1M K-Acetate + 150 mM NaCl, pH 5.0 (75 mS/cm)		
-4		Load	Clarified, sterile filtered lysate pH 5.2 + 35mM NaCl		
Load	Clarified, sterile filtered lysate pH 5.2 + 35mM NaCl	Wash	1M K-Acetate + 150 mM NaCl, pH 5.0 (75 mS/cm)		
Wash	1M K-Acetate + 150 mM NaCl, pH 5.0 (75 mS/cm)	Detergent Wash	0.1M Tris, 10mM NaCl, + 0.5% detergent, pH 7.5		
		EDTA Wash	0.1M Tris, 10mM NaCl, + 2mM EDTA, pH 7.5		
Elute	100 mM Tris, pH 9 + 1M NaCl	Elute w/EDTA	100 mM Tris, 1M NaCl + 2mM EDTA, pH 9		
CIP	1M NaOH + 2 M NaCl	CIP	1M NaOH + 2 M NaCl		

Results

	Nucleic Acid Content	Endotoxin Content	Cycle Time
Feed Conditions	4% DNA, 96% RNA	380,000 EU/mg	N/A
Elution w/ Control wash (measured from eluate pool)	77% DNA, 23% RNA	3,100 EU/mg	55 min
Elution w/ Detergent wash (measured from eluate pool)	95% DNA, 5% RNA	500 EU/mg	65 min

AEX Capture Chromatography- Membrane Vs Resin

Binding Capacity	8	g/L		Binding Capacity	3	g/L
Membrane Volume	0.46	L		Resin Volume	1.18	L
Flow Rate	4.6	LPM		Flow Rate	0.3	LPM
Step Time	1.1	hr		Step Time	9.9	hr
Cycles	1	cycle		Cycles	1	cycle
Productivity	7.3	g pDNA	A/L/hr	Productivity	0.3	g pDNA/

Merck

© 2022 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved. Merck, MilliporeSigma, Millipore, the vibrant M, Mobius, Pellicon, Natrix, Millistak+, Clarisolve, Millipore Express, Biomax, Ultracel, Prostak, Fractogel, VMAX and PMAX are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates. All other trademarks are the property of their respective owners. Detailed information on trademarks is available via publicly accessible resources