

Vaccine Innovations

Lessons learned in developing mRNA-based COVID-19 vaccines WALVAX決森主物

Andrew Wong, MD, MBA Director, Business Development, Walvax Biotech General Manager, Wotai Biotech Co., Ltd., a Walvax subsidiary December 9, 2022

- Overview of Walvax

History | 21 Years in Business

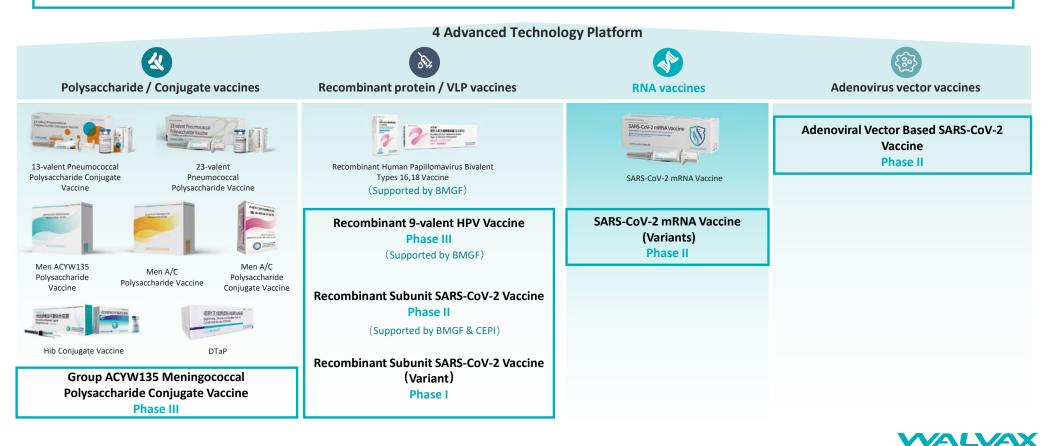
Founded in 2001 with 13 subsidiaries

Market Value |\$9.0 B

IPO in 2010 Market value US\$9.16 B (as of today)

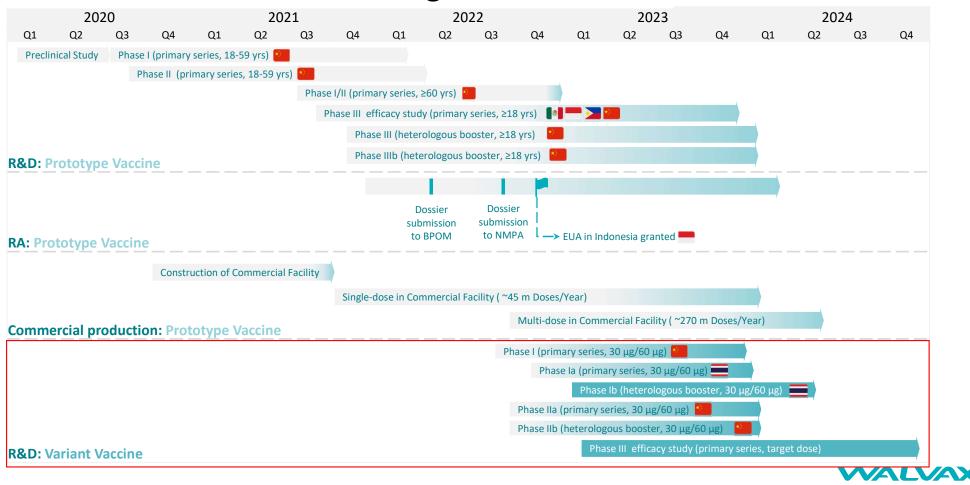
Global Sales | \$531M

Products distributed in 18 countries Worldwide sales: 2021 - US\$531 million 1H2022 - US\$348 million


Licensed Products | 9 Vaccines

Pneumococcal + Human papillomavirus+ Meningococcal vaccine series + mRNA COVID-19 vaccine

WAL

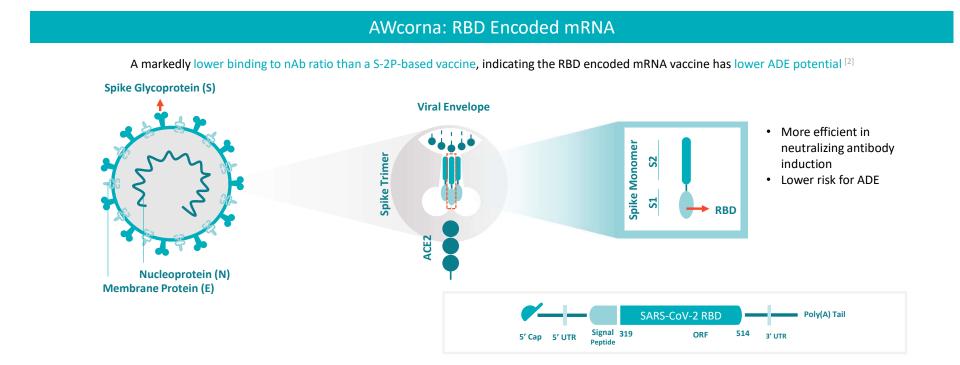

Product and Pipeline

With 9 licensed products, Walvax has world's 2nd approved PCV-13, 4th approved mRNA Covid-19 vaccine and 5th approved HPV vaccine.

Prototype Variant

mRNA COVID-19 Vaccine Programs at Walvax

Prototype Product Profile



Proprietary © 2022 Walvax Biotechnology Co., Ltd. All rights reserved

WALVAX

Target Antigen Selection

An ideal COVID-19 vaccine target would be expected to induce high titers of nAbs, reduce non-nAb production to minimize ADE potential ^[1]

- 1. Dai, L., & Gao, G. F. (2020). Viral targets for vaccines against COVID-19. Nature Reviews Immunology, 1-10.
- Walls, A. C., Fiala, B., Schäfer, A., Wrenn, S., Pham, M. N., Murphy, M., ... & King, N. P. (2020). Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell, 183(5), 1367-1382.

WALVAX

Prototype

Efficacy and Safety of AWcorna as 2-dose Primary Series: Study Design and Topline Results

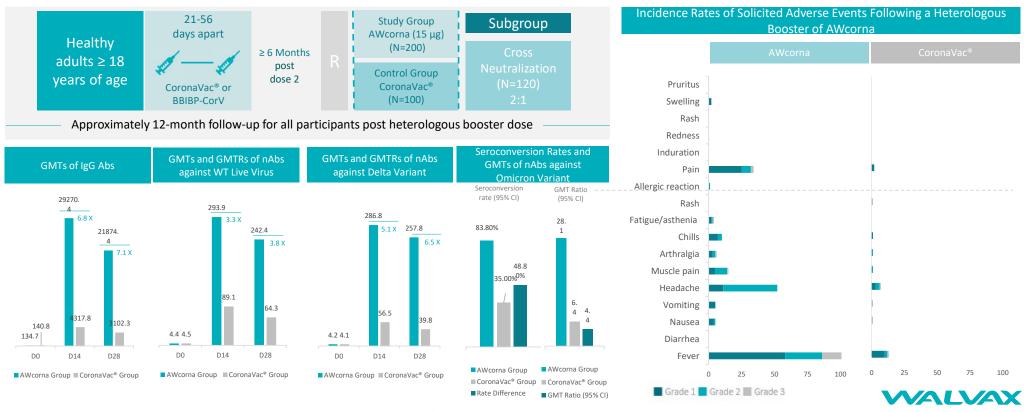
ARCoV-005 (NCT04847102): A global, multi-center, randomized, double-blind, placebo-controlled, phase III clinical study to evaluate the protective efficacy, safety and immunogenicity of AWcorna in healthy population aged 18 years and older (N=28000)

Healthy adults ≥ 18 years old ~25% subjects ≥ 60 years	R	Study Group AWcorna (15 μg) (N=14000)	Subgroup	≥14 days (≥D42) post Dose 2	2022 Q3	Placebo	•	2023
			Non-subgroup		Final analysis with at least 156 cases identified	Crossover		End of Study
		Control Group Placebo (N=14000)	Reactogenecity (N≥6000)					
			Immunogenicity (N≥3000)			AWcorna		

Approximately 12-month follow-up for all participants post complete series (including crossover)

Safety: well tolerated with commonly reported symptoms of side effects such as fever, pain at injection site, fatigue, muscle pain (myalgia), headache, chills, swelling, and itching (pruritus).

Efficacy: Phase III data showed the efficacy of AWcorna against symptomatic wild-type SARS-CoV-2 infection was 83.58%, and the efficacy against the Omicron variant was 71.17% in preventing moderate COVID-19 diseases.



N: planned sample size

Prototype

Promising Immunogenicity and Well-performed Safety of AWcorna as a Heterologous Booster

AWcorna-007 (ChiCTR2100053701): A single-center, randomized, double-blind, positive-controlled clinical trial to evaluate the immunogenicity and safety of 1 heterologous booster dose of AWcorna in subjects aged 18 years and above who have completed the 2-dose primary series with CoronaVac[®] or BBIBP-CorV

Prototype

6 Papers Published

www.estue.com/c

al Transduction and Targeted Therapy

TER OPEN

Cell Research

LETTER TO THE EDITOR A 100 1 444 Safety and superior immunogenicity of heterologous boosting with an RBD-based SARS-CoV-2 mRNA vaccine

in Chinese adults Th Advances

OVID-19 vaccines elicit potent immune responses in mice

eterologous prime-boost with AdC68- and mRNA-based

OPEN term stability and protection efficacy of the RBD-

ing COVID-19 mRNA vaccine in nonhuman primates

g Illang¹, Xao-Feng Li¹, Ne Na Zhang^{1,1}, Liang Li², Chae Li¹, Ni Jan Muang¹, Yuan-Guo Li¹, Hi-Ming Zhang¹, Fang Cheng¹, Kai-Fing Gu², Mei Zhang², Onno-Chen Ma¹, Yuan Qiang Deng (), Tran Shu Cao', Zhau[®] Ya Hang Tano[®] Xi dhu

y and immunogenicity of the SARS-CoV-2 ARCoV A vaccine in Chinese adults: a randomised, le-blind, placebo-controlled, phase 1 trial

TER TO THE EDITOR

10 0022 13

Articles

10

spid development of an updated mRNA vaccine against the

ARS-CoV-2 Omicron variant NAMES 202

www.nature.com/cr www.coll-research.com

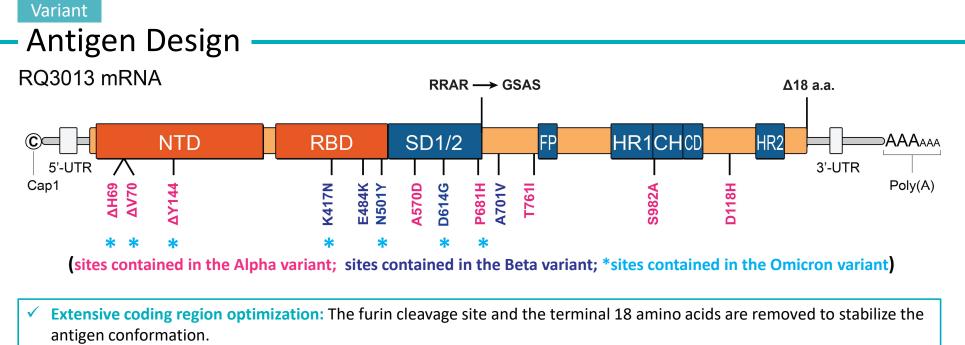
e ostable mRNA Vaccine against COVID-19

Authors Ne-Na Zhang, Xiao-Feng Li, Yong-Qiang Deng, ..., You-Chun Wang, Bo Ying, Cheng-Feng Qin

bo ying@abogenbio.com (B.Y.), qinch@bmi.ac.cn (C.#.Q.), wangyc@nitdc.org.cn (Y.-C.W.)

In prief ARCOV is an LNP-encapsulated mRNA vaccine platform that is highly immunoperic and safe in mice and non-human primates, conferring protection against challenge with a SARS-CoV-2 mouse-adapted strain.

Proprietary © 2022 Walvax Biotechnology Co., Ltd. All rights reserved


WALVAX

CelPro

Variant Target Product Profile -

Generic Name	SARS-CoV-2 variant mRNA vaccine (Chimeric S protein vaccine)
Dosage Form	Injection
Administration Route	Intramuscular injection
Specification	Specification 1: 30 μ g/0.15 mL/dose; Specification 2: 60 μ g/0.3 mL/dose
Presentation	Preparation 1: 0.15 mL/vial; 0.15 mL for each single human dose, containing 30 μg mRNA Preparation 2: 0.3 mL/vial; 0.3 mL for each single human dose, containing 60 μg mRNA
Packaging	1 mL vial, single dose
Indication	Prevention of COVID-19 caused by the infection of SARS-CoV-2
Dosing Regimen	Intramuscular injection at Day 0 and Day 28
Target Population	Population aged 18 years and above
Storage Condition	Store between -50°C to -15°C. Protect from light. The product can be stored for at least 24 months in frozen storage. After thawing at 2 °C to 8 °C, the product can be stored up to 30 days in the refrigerator between 2 °C to 8 °C.

- ✓ Variant chimeric antigen design: A single—strand mRNA encodes a chimeric S protein antigen. A key immune escape related mutation site of Beta was introduced based on the full-length S protein of the Alpha mutant strain.
- Strong broad-spectrum potential: RQ3013 is expected to be widely cross-reactive to various VoCs in addition to Alpha and Beta variants based on the following considerations: Omicron is under the same lineage as the Alpha variant; The immune escape-related mutations contained in Omicron are the same as those in the Beta variant; RQ3013 is designed to contain 7 mutations as those contained in the Omicron variant.

Variant - Highlights of RQ3013

Advanced design: novel S variant antigen; proprietary mRNA design

Ensured efficacy and safety: excellent preclinical data; clinically proved delivery system; safety and immunogenicity assessed as compared to COMIRNATY[®] starting from phase 1

Reliable Product Quality: state-of-the-art mRNA capping and purification; production scale of LNP formation

Affordable Vaccine: self-supply of raw materials (enzymes, cap analogs, modified nucleotide and ionizable lipid)

Proprietary © 2022 Walvax Biotechnology Co., Ltd. All rights reserved

- Challenges and Opportunities for Vaccine Manufacturers

Challenges	Opportunities
 Reduced efficacy against infection caused by emerging or mutated strains Huge investment at early stage Shrinking target population for efficacy study as vaccination rate increases Emergency use authorization are becoming more stringent Packaging consumables like pre-filled syringe are in short supply Surging cost of shipment and raw materials Stocks and flow of massive vaccines challenge corporate supply chain management 	 Strengthened international collaboration More accessible government subsidies and grants from international organizations Largely shortened development cycle for COVID-19 vaccines (12-24 months compared with 10-15 years for traditional pathway) Having boosted significant progress in innovative technology platforms (e.g., mRNA) Manufacturing capacity ramp-up and facility upgrade Raised social awareness of immunization and peer recognition

Andrew Wong andrew.wong@walvax.com en.walvax.com

