Challenges and proposed solutions

Tim Schofield

CMC Sciences, LLC

International assessment of the PSPT in mice to replace the intracerebral-challenge Mouse Protection Test (MPT) for whole-cell Pertussis (wP)

July 6th, 2022

Goal

- Some laboratories met challenges when implementing the PSPT assay
 - Due to relative experience with an immunology based *in vivo* potency assay
 - Particularly the mouse ELISA
 - Without experience they were unable to effectively assess outcomes
 - Some standards of practice were different for mature labs
- *In-study* challenges and their solutions, as well as challenges requiring *post-study* solutions have been catalogued and will be introduced into a revision of the *in vivo* and ELISA PSPT protocols
- Follow-up will also include guidance on assay validation

Catalogue of challenges

- PSPT ELISA (titers calibrated from a 4PL curve)
 - Design challenges
 - Dilution of conjugate
 - Initial dilutions of the positive control (PC)
 - Results challenges
 - Substandard PC curves
 - High negative control readings/low test sample readings
 - "Negative" responders

Solutions: ELISA optimization Extension of dynamic range and in vivo optimization

- PSPT *in vivo* (parallel line analysis/PLA from 4 inoculation levels of a test and a reference sample)
 - Design challenges
 - Doses of test vaccines (underdosing)
 - Results challenges
 - High proportions of negative mouse titers

- Solution: in vivo optimization

Mouse immunogenicity ELISA

- Calibration of dilution series of mouse sera giving Ab titers
 - Based on a positive control (PC) "concentration response" curve
 - PC is assigned 100 EU/mL
 - PC curve is generated from a prescribed (by SOP) concentration series (initial dilution and 2-fold series)
 - PC readouts (OD) are fit to a four-parameter logistic (4PL) function (using EXCEL[®] Solver)
 - Mouse sera are diluted over a 2-fold series
 - Dilutions of a mouse serum that fall within the "dynamic range" (DR) are interpolated from the PC curve
 - Titers are "dilution corrected"
 - The final titer is the geometric mean of the "dilution corrected" titers that fall in the DR.
 - Titer assigned 2.5 EU/mL if below the curve (negative)

ELISA challenges and solutions (1/3)

• ELISA protocol conditions yielded substandard PC curves (also high negative controls)

ELISA challenges and solutions (2/3)

- Consequences
 - Narrow dynamic range (DR) coupled with high negative control values
 - High variability in mouse titers \rightarrow wide confidence interval on RP estimate
 - Increased risk of false negative mouse titers
- *In-study* solutions
 - Reoptimized conjugate dilution ("checkerboard")
 - Generate curves at 1:2000, 1:4000, 1:8000, 1:16000, and 1:32000
 - Select dilution that yielded ideal features in the positive control curve
 - Retest mouse sera after selective optimizations
 - Increase fold dilution of positive control from 2-fold to 2.5-fold
 - Change starting dilution
 - Extended DR from 25%-75% to 20%-80%

ELISA challenges and solutions (3/3)

- Post study ELISA optimization (prototype)
 - Multi-factor design of experiments (DOE)
 - Factors:
 - Conjugate dilution
 - Incubation time/temperature
 - Washing strength
 - ...
 - Optimization responses
 - Negative control response/lower asymptote (↓)
 - Upper asymptote (们)
 - Dynamic range/slope (⇔)
 - Visual
 - Design study,
 - Analyze data,
 - Identify region of optimal responses

in vivo parallel line analysis

- Parallel line analysis (PLA) was performed on vaccine dose response series (4-doses) of each test lot and a Standard
 - Using CombiStats (EDQM)
 - Performed using both an IRS/NRS and a test lot (FL1) as the standard
- The relative potency (RP) of each test lot is determined if a collection of "system suitability" and "sample suitability" criteria are met (via ANOVA p-value)
 - System suitability:
 - *Linearity* of the standard response profile
 - Sample suitability:
 - Linearity of the test lot response profile
 - Parallelism of the test lot profile and the standard profile
 - The *95% confidence interval on RP* must fall within 50% to 200% of the estimated value

in vivo challenges and solutions (1/2)

- System and sample suitability criteria were satisfied for all lots in 6/10 labs when RP was calculated versus FL1; 0/10 labs against the IRS/NRS
- Test vaccines were collectively under-dosed in all laboratories (will be discussed during Q&A)
 - Resulting in numerous negatives (2.5) at lower doses
 - Causing:
 - Nonlinearity of concentration response
 - Nonparallelism between test and standard
 - Excess variability due to poor fit to "pooled curves" (yielding a wide confidence interval)

in vivo challenges and solutions (2/2)

- In study solutions
 - Elimination of data in PLA (CombiStats processing)
 - Dropped mice with responses at or below the NC
 - Dropped low doses that yielded a high proportion of negative responses
 - Note: this should not be required after *in vivo* and *in vitro* optimizations
- Post study solution
 - "Dose range" test and reference vaccines after ELISA optimization

Needs going forward

- Update SOP to reflect solutions to challenges
 - ELISA optimization
 - Conjugate dilution (or DOE)
 - Starting dilution of PC
 - Dilution increment (2-fold, 2.5-fold, 3-fold ...)
 - Expectations for acceptable performance (e.g., PC pts. on asymptotes, DR, slope; NC response)
 - *in vivo* optimization
 - Dose-ranging of test vaccine(s)
 - Rules for data screening (no. negatives/missing mice, dose elimination, ...)
 - Additional/alternative bases for validity criteria (e.g., USP equivalence approach; vs ANOVA)
- DCVMN support on other laboratory needs as well as assay qualification/validation

Thank you!

Questions?