

WELCOME

Ahead of the presentation we would like you to connect to the internet and ensure you are able to open **Menti.com**

Instructions for connecting to internet:

WiFi: Sheraton_CONFERENCE

Password: None required

Catalyzing product development of vaccine technology innovations: Vaccine Innovation Prioritisation Strategy

Marion Menozzi-Arnaud, Gavi Debra Kristensen, PATH Birgitte Giersing, WHO

October 2019

Catalyzing product development of vaccine technology innovations: Vaccine Innovation Prioritisation Strategy

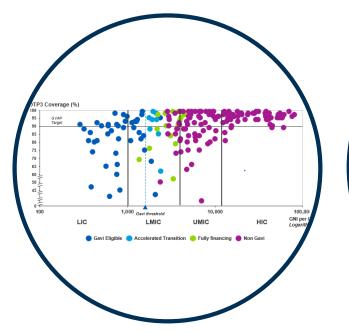
Agenda

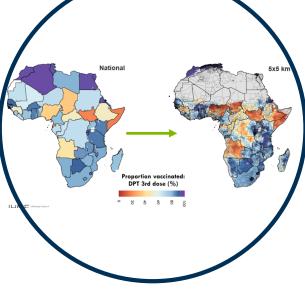
Торіс		Presenter
•	The Alliance VIPS initiative	Marion Menozzi, Gavi
•	Nine prioritised innovations from the VIPS initial prioritisation phase	Debra Kristensen, PATH
•	Process for the final prioritisation phase	Birgitte Giersing, WHO
•	Q&A	Dr. Sotiris Missailidis
•	Panel discussion - 'How VIPS may help drive vaccine delivery innovations but what else is needed beyond the prioritisation and communication?'	Dominic Hein, Gavi
•	Q&A	Dr. Sotiris Missailidis

Catalyzing product development of vaccine technology innovations: Vaccine Innovation Prioritisation Strategy

Agenda

Торіс	Presenter
The Alliance VIPS initiative	Marion Menozzi, Gavi
 Nine prioritised innovations from the VIPS initial prioritisation phase 	Debra Kristensen, PATH
 Process for the final prioritisation phase 	Birgitte Giersing, WHO
• Q&A	Dr. Sotiris Missailidis
 Panel discussion - 'How VIPS may help drive vaccine delivery innovations but what else is needed beyond the prioritisation and communication?' 	Dominic Hein, Gavi
• Q&A	Dr. Sotiris Missailidis




Why is VIPS needed?

UNICER

Innovative delivery approaches will be needed to help achieve the Alliance coverage and equity targets

The next decade will likely need to shift to sub-national use of **differentiated products** Many innovation initiatives across the Alliance, but strategy and effort **not fully aligned or coordinated**

VIPS background and goal

2016 – 2020: Innovation as one of the Alliance priorities for shaping markets The Alliance aims to pursue a common agenda of driving vaccine product innovation to better meet country needs and support Alliance goals

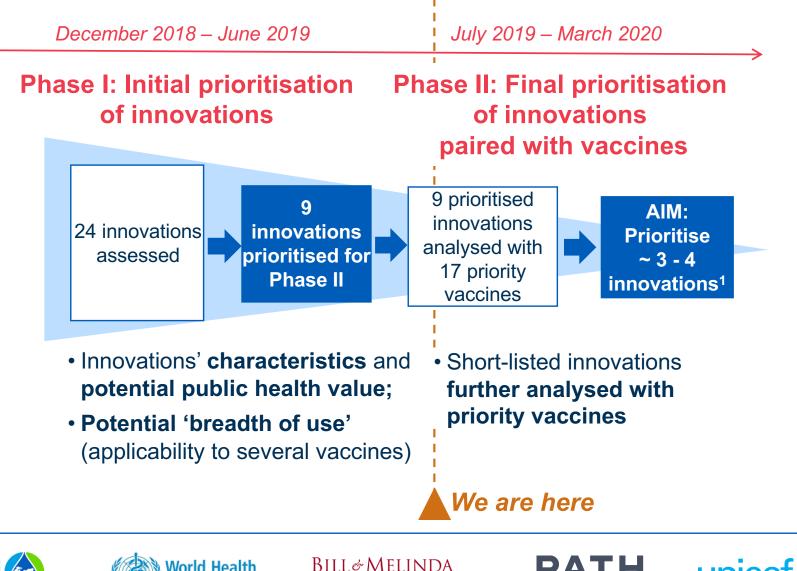
Prioritise innovations in vaccine delivery attributes to provide greater clarity to manufacturers and immunisation partners to make investment decisions

BILL& MELINDA GATES foundation

VIPS

VIPS is a close Alliance-wide collaboration effort

BILL& MELINDA GATES foundation



VIPS will be delivered through two prioritisation phases by end Q1 2020

unicet Organization GATES foundation ¹ Purpose is to prioritise innovations "themselves", "as platforms", however it will be signaled for which individual vaccines or types of vaccines the innovation is seen to be most valuable.

Norld Health

24 vaccine product innovations are being assessed through the VIPS process

Primary vaccine containers (without delivery device)

 Blow-fill-seal (BFS) primary containers

Dual chamber vials

Delivery technologies (not pre-filled)

- AD sharps-injury protection (SIP) syringes
- Disposable syringe jet injectors (DSJI)
 - ID syringes

Integrated primary containers and delivery technologies

- Compact prefilled auto-disable devices (CPAD)
- Single-chamber cartridge injectors
- Dual-chamber delivery devices
- Microarray patches (MAP)
- Prefilled polymer BFS droppers/dispensers
- Prefilled dry-powder intranasal devices
- Solid-dose implants (with applicator)
- Sub-lingual dosage forms
- Oral fast-dissolving tablets

Formulation

- Heat stable/controlled temperature chain (CTC) qualified liquid formulations
- Heat stable/ CTC qualified dry formulations
- Freeze damage resistant liquid formulations

Packaging and safety

- Bundling devices
- Reconstitution vial adapters
- Plastic needles (for reconstitution)

Labelling on primary packaging

- Freeze indicator on primary vaccine container
- Combined Vaccine vial Monitor (VVM) and Threshold Indicator (TI)
- Barcodes
- Radio Frequency Identification (RFID) labels

VIPS methodology relies on a thorough evaluation process, centered on country needs

VIPS advised by a Steering Committee of 17 independent experts, 9 are members of WHO vaccine advisory committees (PDVAC and IPAC)

An analytical evaluation framework allows a transparent and balanced assessment of innovation benefits

VIPS criteria		Phase I Indicators	RI facility	RI community	Campaig
	Health impact	Ability of the vaccine presentation to withstand heat exposure	+	++	++
	Health Impact	Ability of the vaccine presentation to withstand freeze exposure			
_		Ease of use	+	+	++
 инаку галкілд спіста 	Coverage & equity impact	Potential to reduce stock outs based on the number of separate components necessary to deliver the vaccine or improved ability to track vaccine commodities			
p p		Acceptability of the vaccine presentation to patients/caregivers		+	+
	Coloring and	Likelihood of contamination			+
< la	Safety impact	Likelihood of needle stick injury			
	(i.e. Delivery and Introduction and recurrent costs)	Total economic cost of storage / transport of commodities per dose	+		
2		Total economic cost of the time spent by staff per dose	++	++	+
		Total economic cost of one-time / upfront purchases or investments required to introduce the vaccine presentation and of recurrent costs associated with the vaccine presentation (not otherwise accounted for)			

Country consultations ensure that country needs drive the prioritisation

BILL& MELINDA GATES foundation

a Product Development for Vaccines Advisory Committee b Immunization Practices Advisory Committee

Evaluation framework for Phase I

Criteria

Indicators

	Health Impact	 Ability of the innovation to withstand heat exposure Ability of the innovation to withstand freeze exposure
Primary ranking	Coverage and Equity impact	 Ease of use Potential to reduce stock outs based on the number of separate components necessary to deliver the vaccine or improved ability to track vaccine commodities Acceptability of the innovation to patients/caregivers
criteria	Safety impact	 Likelihood of contamination Likelihood of needle-stick injury
	Economic costs (i.e. Delivery and Introduction and recurrent costs)	 Total cost of storage and transport of commodities per dose Total cost of the time spent by staff per dose Total cost of introduction and recurrent costs (not otherwise accounted for)
Secondary criteria	Potential breadth of innovation use	 Applicability of the innovation to one or several types of vaccines Ability of the innovation to facilitate novel vaccine combination

VIPS methodology includes 3 country consultations

Understanding country immunisation barriers and needs (that can be addressed by VIPS innovations)

- Online survey
- Q4 2018
- 500 complete responses across 55 Gavi and non Gavi countries

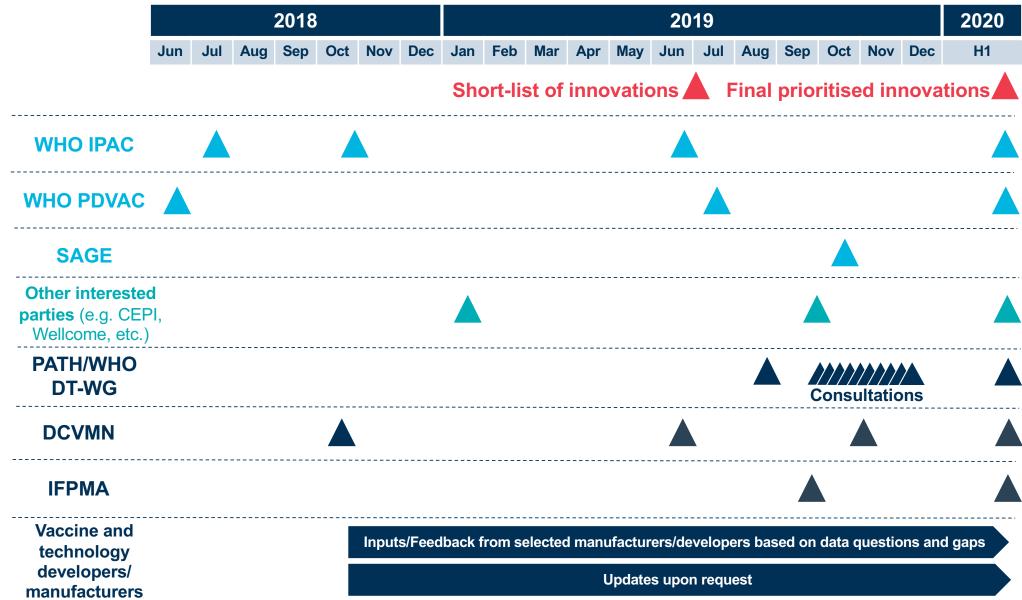
Identifying vaccinespecific barriers and needs (that can be addressed by VIPS innovations)

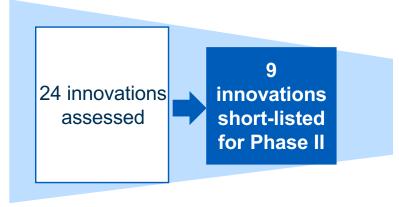
- Online survey
- Q4 2019 Ongoing

Feedback on 9 shortlisted innovations under Phase I

- In-person in-depth interviews
- Q4 2019 Ongoing
- 10-15 people in 5-6 countries at national and subnational levels

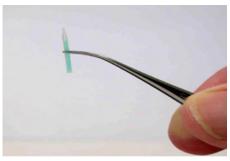
Inputs are used for weighting indicators to inform the prioritisation




Beyond countries, VIPS also ensures alignment and engagement with existing committees and industry

9 innovations have been short-listed for Phase II based on...

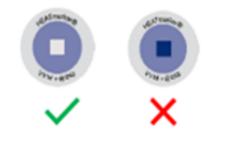
- Multiple public health benefits OR a strong unique benefit
- Broad antigen applicability
- And/ or additional strategic rationale for prioritisation



9 innovations short-listed for further analysis under Phase II

Microarray patches (MAPs)

Solid-dose implants


Heat stable/controlled temperature chain (CTC) qualified liquid formulations

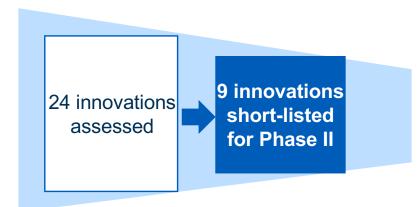
Compact prefilled auto-disable devices (CPADs)

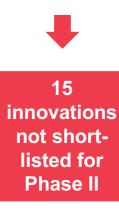
Dual-chamber delivery devices

Combined Vaccine vial Monitor (VVM) and Threshold Indicator (TI)

Note: Innovation pictures are just examples of innovations

AD sharps-injury protection (SIP) syringes


Freeze damage resistant liquid formulations



Barcodes / Radio Frequency Identification (RFID)

15 innovations have not been shortlisted for Phase II ...

- Other innovations offered similar benefits, plus additional benefits
- Potential public health benefits but some challenges
- Limited antigen applicability

VIPS aspirational vision

Beyond prioritisation and signalling, the Alliance recognises the need to support development and/or uptake of the prioritised innovations

Depending on Gavi 5.0 mandate and resources, the Alliance will consider how to support the prioritised innovations beyond prioritisation and signalling

Support may be needed for:

- Product development
- Regulatory pathway
- Country studies
- Policy
- Procurement
- Implementation
- Etc.

Catalyzing product development of vaccine technology innovations: Vaccine Innovation Prioritisation Strategy

Agenda

Торіс	Presenter
The Alliance VIPS initiative	Marion Menozzi, Gavi
Nine prioritised innovations from the VIPS initial prioritisation phase	Debra Kristensen, PATH
 Process for the final prioritisation phase 	Birgitte Giersing, WHO
• Q&A	Dr. Sotiris Missailidis
 Panel discussion - 'How VIPS may help drive vaccine delivery innovations but what else is needed beyond the prioritisation and communication?' 	Dominic Hein, Gavi
• Q&A	Dr. Sotiris Missailidis

Menti survey

Please open Menti.com on your web browser

Code: 92 39 8

1. Which of these 9 innovations are you familiar with? (Check all that apply.)

Mentimeter survey

part 1

About Microarray patches (MAPs)

- MAPs contain an array of micro-projections on a patch that deliver dry vaccine into the epidermis and/or dermis layers.
- Administered without an applicator, by applying pressure with fingers, or using an integrated applicator^a

Note: Innovation pictures are just examples of innovations

BILL&MELINDA GATES foundation

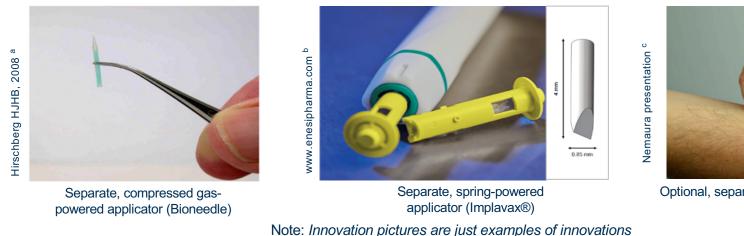
^a Lead candidate MAPs for vaccine delivery either have no applicator or an integrated applicator. Therefore, MAPs with a separate applicator are not considered in this assessment ^b <u>http://micronbiomedical.com/technology/</u>; ^c https://www.who.int/immunization/research/meetings_workshops/PDVAC_2017_Delivery_Tech_Update_Zehrung_PATH.pdf?ua=1

MAPs: Rationale for prioritisation

Potential to resolve reconstitution issues, multiple public health benefits, and broad applicability

MAPs have the potential to:

Health Impact	 Withstand heat and freeze exposure 	
	 Positively impact coverage and equity: 	
Coverage	 Easier to use; use by lesser trained vaccinators or self- administration; alternative delivery scenarios 	
and Equity impact	Less painful	
	Reduce stock-outs	
Safety impact	 Reduced contamination/needlestick risk 	
Economic costs	 Save health care worker time 	
Potential breadth of	 Broad applicability and might facilitate novel vaccine combination Might also improve immunogenicity 	
innovation use		



About Solid-dose implants (SDIs)

- Vaccines reformulated into a **solid format, shaped like a needle** to be **implanted below the skin.**
- Dose either dissolves immediately or is released slowly.
- Contained in a **cartridge or cassette** for easy handling prior to administration.
- Administered with an **applicator to propel the SDI into the skin**, separate and re-usable, or integrated and single use.

Optional, separate applicator (Micropatch™)

BILL& MELINDA GATES foundation

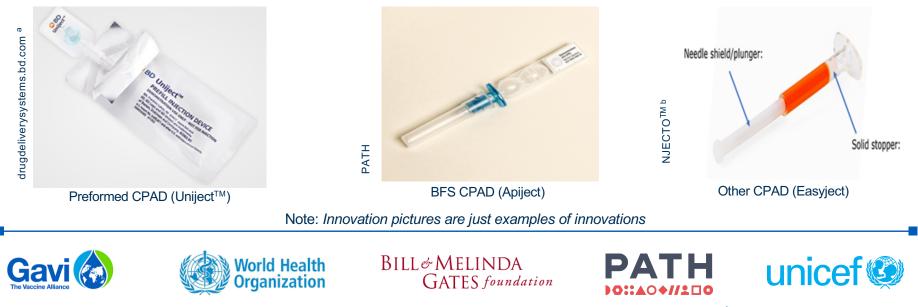
^a Hirschberg HJHB, van de Wijdeven GGP, Kelder AB, van den Dobbelsteen GPJM, Kersten GFA. Bioneedles as vaccine carriers. Vaccine. 2008 May 2;26(19):2389–97. ^b <u>https://www.enesipharma.com/technologies/platform/</u>;^c Nemaura presentation. Teriparatide microneedle patch for osteoporosis, December 2018. Presented during telecon 12 February 2019.

SDIs: Rationale for prioritisation

Potential multiple public health benefits and broad applicability. Potential to solve issues associated with MAPs. e.g. reactogenicity, payload issues

SDIs have the potential to:

Health Impact	 Withstand heat and freeze exposure
Coverage	 Positively impact coverage and equity: Easier to use: use by lesser trained vaccinators; alternative delivery scenarios
and Equity impact	 Increased acceptability to standard needle and syringe Reduce stock-outs
Safety impact	 Reduced contamination/needlestick risk
Economic costs	 Save health care worker time
Potential breadth of innovation use	 Broad applicability to all parenteral vaccines and might facilitate novel vaccine combination


About Compact prefilled autodisable devices (CPADs)

- Integrated primary containers and injection devices prefilled with liquid vaccines.
- Design prevents reuse and minimizes the space required for storage and shipping.

Three CPAD subtypes have been assessed:

- **Preformed CPADs:** Manufactured 'open', supplied sterile, ready to fill/seal by the vaccine manufacturer.
- **Blow-fill-seal (BFS) CPADs:** Manufactured using BFS automated technology; produced, filled, and sealed in a continuous process.
- Other CPAD types.

^ahttps://drugdeliverysystems.bd.com/products/prefillable-syringe-systems/vaccine-syringes/uniject-auto-disable-pre-fillable-injection-system; ^b http://injecto.eu/easyject/

CPADs: Rationale for prioritisation

Potential multiple public health benefits, broad applicability and proven benefits in facilitating vaccine outreach

CPADs have the potential to:

Health Impact	 Positively impact coverage and equity:
Coverage	 Easier to use: use by lesser trained vaccinators; alternative delivery scenarios
and Equity impact	 Increased acceptability of Uniject[™] preformed CPADs Reduce stock-outs
Safety impact	Reduced contamination/needlestick risk
Economic costs	Save health care worker time
	Reduce storage and transportation costs

Potential breadth of innovation use

DILL[®]IVIELINDA GATES foundation

• Broad applicability to all liquid, parenteral vaccines

- Dual chamber delivery devices are **fully integrated reconstitution technologies**.
- Prefilled with liquid and dry vaccine components, which are **mixed within the device and administered.**

Note: Innovation pictures are just examples of innovations

BILL& MELINDA GATES foundation

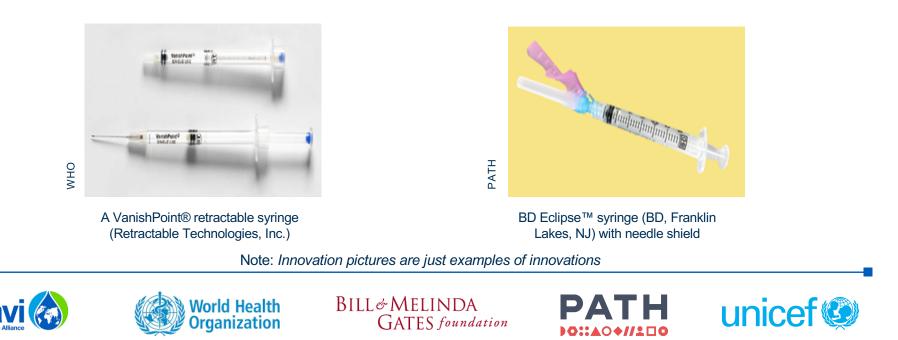
^a https://www.pharmaceutical-networking.com/vetter-dual-chamber-delivery-systems/ ^b https://www.pharmapan.com/sites/default/files/downloads/2017-10/PHARMAPAN_Dual_Chamber_Blister_1.1.pdf <u>chttps://www.webpackaging.com/en/portals/webpac/assets/11138717/neopacs-fleximed-now-in-large-format/</u>

Dual-chamber delivery devices: Rationale for prioritisation

Potential to resolve reconstitution issues, multiple public health benefits and broad applicability

Dual-chamber delivery devices have the potential to:

Health Impact	 Positively impact coverage and equity: 	
	Easier to use	
Coverage	 Reduce vaccine and diluent wastage and stock-outs and simplify inventory processes 	
and Equity impact	 Increase acceptability: reduce the risk of reconstitution with the wrong diluent 	
Safety impact	 Reduced contamination/needlestick risk 	
Economic costs	Save health care worker time	
Potential breadth of innovation use	 Broad applicability to dry and other two-component vaccines. 	



About Autodisable (AD) sharpsinjury protection (SIP) syringes

- Single-use, disposable syringes with a mechanism that covers the needle after use to reduce the risk of accidental needlestick injury.
- Retraction of the needle into the barrel after injection or a needle shield.
- Some syringes have **SIP features that are automatically activated** and others require extra activation steps by the end user.

AD SIP syringes: Rationale for prioritisation

Single public health benefit attributed to improved safety.

WHO Performance, Quality, and Safety group plans to require SIP features on both AD and reuse prevention syringes by the end of 2020.

AD SIP syringes have the potential to:

• Improve safety due to reduced risk of contamination and injuries/transmission of bloodborne pathogens		
Potential breadth of innovation use	 Broad applicability as AD SIP syringes can be applied to all parenteral vaccines 	

About Freeze damage resistant liquid formulations

- For many vaccines, when frozen the antigen-adjuvant particles agglomerate and sediment - resulting in the irreversible loss of potency.
- Developing novel freeze-stable formulations using different excipients (stabilising agents) could prevent agglomeration and stabilise the potency of vaccines.
- The addition of excipients has been demonstrated to reduce the freeze-sensitivity of hepatitis B vaccine and other vaccines containing aluminum-salt adjuvants including diphtheria, tetanus and pertussis (DTP); and pentavalent (hepatitis B, DTP, Haemophilus influenza type b) vaccines.

Freeze damage resistant liquid vaccines

Note: Innovation pictures are just examples of innovations

BILL& MELINDA GATES foundation

^a https://www.myelomacrowd.org/wp-content/uploads/2015/05/vials.jpg

^b https://www.publichealthontario.ca/en/BrowseByTopic/InfectiousDiseases/PIDAC/Pages/Infection-Prevention-and-Control-for-Clinical-Office-Practice-Multidose-Vials.aspx

Freeze damage resistant liquid formulations: Rationale for prioritisation

Safeguards vaccine potency and prevents vaccine wastage.

Prioritisation could raise the visibility of the technology to vaccine manufacturers currently developing liquid vaccines with aluminum adjuvants.

Freeze damage resistant liquid formulations have the potential to:

Health Impact	 Improve freeze resistance of liquid formulations Safeguard the potency of the vaccine if accidentally exposed to freezing temperatures and help to prevent vaccine wastage
Potential breadth of innovation use	 Broad applicability to all liquid vaccines containing aluminum-salt adjuvant and potentially to other freeze-sensitive vaccines

About Heat stable/controlled temperature chain (CTC) qualified liquid formulations

- Liquid vaccine formulations that are sufficiently heat stable to be kept in a CTC.
- CTC use of vaccines allows for single excursion of the vaccine into ambient temperatures not exceeding +40°C for a minimum of 3 days, just prior to administration.
- Heat-stable vaccines differ in the length of time they can be stored in a CTC and the maximum temperature they can endure while remaining stable and potent.
- CTC qualification involves regulatory approval and prequalification by WHO.

Heat stable/CTC qualified liquid formulations: Rationale for prioritisation

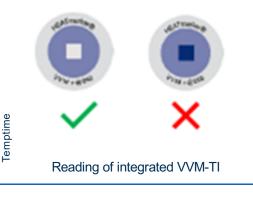
unicef 🥴

Potential multiple public health benefits and WHO recommended

Heat stable/CTC qualified liquid formulations have the potential to:

Health Impact	 Improve vaccine effectiveness: less susceptible to heat damage
Coverage and Equity impact	 Reduce likelihood of freeze exposure Positively impact coverage and equity: Easier to use ; alternative delivery scenarios; ease cold chain logistics for health care workers Increase acceptability Reduce stock-outs
Safety impact	 Reduced contamination/needlestick risk
Economic costs	 Reduce storage and transportation volume and associated costs Save health care worker time
Potential breadth of innovation use	 Broad applicability to all vaccines that are currently liquid and thermostable
Gavi World Health BILL& MELINDA PATH upic of P	

GATES foundation


ganization

About Combined Vaccine Vial Monitor (VVM) and Threshold Indicators (TI)

- Combined VVM-TIs on primary containers **undergo gradual colour change** up to a specified peak threshold temperature and **rapidly react if exposed at or above the threshold temperature**.
- Currently, VVMs and TIs are not integrated:
 - VVMs on primary containers and standalone TIs are currently used when vaccines are kept in a controlled temperature chain (CTC)
 - TIs **purchased and distributed separately** from the vaccine and kept at temperatures below their threshold
 - VVM response **not rapid enough at higher temperatures** (e.g. >37°C or 40°C), whereas TI reacts rapidly if exposed at or above a defined threshold temperature.
- There are two types of combined VVM-TIs:
 - VVM and TI placed together and reviewed separately
 - **TI is integrated into the VVM:** looks and is interpreted identically to the existing VVMs.

BILL& MELINDA GATES foundation

Note: Innovation pictures are just examples of innovations

Combined VVM and TIs: Rationale for prioritisation

Potential to improve upon the current use of VVMs with separate TI indicators. Potential to facilitate use of vaccines in a CTC.

Combined VVM and TIs have the potential to:

Health Impact	 Positively impact coverage and equity:
Coverage and Equity impact	 Positively impact coverage and equity. Easier to use Provide more accurate assessment of the heat exposure status of a vaccine, particularly when used in the CTC
	Reduce TI stock-outs
Economic costs	Save health care worker time
Potential breadth of innovation use	 Broad applicability to all vaccines, even if likely to be most useful for vaccines prequalified for use in a CTC

About Barcodes

- Encode information such as product numbers, serial numbers, supplier data, batch numbers and expiry dates.
- **Scanned electronically** using two dimensional (2D) • scanners, laser or mobile device cameras to automatically capture information.

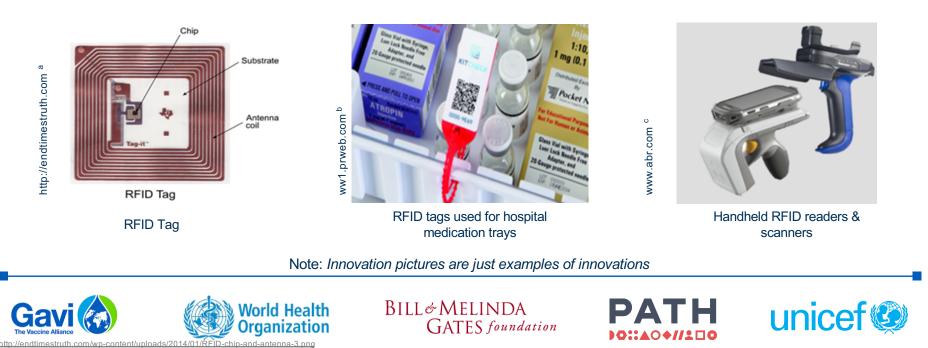
VACCINE

Barcode on secondary packaging

- Enable tracking and monitoring of vaccine products in supply chains.
- Possibility to **automatically import data into patient** electronic medical records (EMRs).
- VIPS assessment based on **barcode placement on** vaccine primary and higher packaging levels.

Note: Innovation pictures are just examples of innovations

BILL& MELINDA GATES foundation



^a https://www.newswire.ca/news-releases/sanofi-pasteur-moves-national-immunization-strategy-forward-with-new-bar-code-technology-509575151.html

About Radio Frequency Identification (RFID)

- RFID tags can be affixed to vaccine primary containers.
- Store a wide range of information useful for inventory control, patient monitoring and providing data for electronic medical record systems.
- An RFID system consists of three components; (i) a tag, (ii) a reader and (iii) the middleware.
- Possibility to identify tags within range no need to individually scan every tag.

^e http://ww1.prweb.com/prfiles/2014/10/05/12223944/HCL%20-%20Seal%20Tags%20Kit%20Check.jp

c https://www.abr.com/products/rfid-products/

Barcodes and RFIDs: Rationale for prioritisation

Potential to improve coverage and increase measurement of coverage and safety monitoring. WHO recommendations and UNICEF interest.

Barcodes and RFIDs have the potential to:

Health Impact	 Positively impact coverage and equity:
Coverage and Equity impact	 Reduce missed opportunities; increase acceptability by improving patient safety Reduce stock-outs: improve traceability ; increase efficiencies in stock management
Economic costs	 Save health care worker time
Potential breadth of innovation use	 Barcodes and RFIDs could be applied to all vaccines, there are no restrictions based on technical feasibility.

Menti survey

Please open Menti.com on your web browser

Code: 92 39 8

2. Which innovations are of most interest to your organization ?

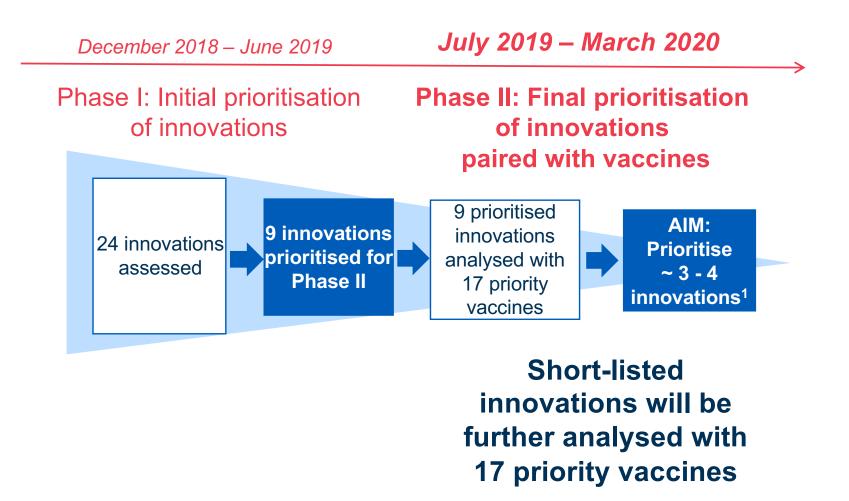
Mentimeter survey

part 2

Catalyzing product development of vaccine technology innovations: Vaccine Innovation Prioritisation Strategy

Agenda

T	opic	Presenter
•	The Alliance VIPS initiative	Marion Menozzi, Gavi
	Nine prioritised innovations from the VIPS initial prioritisation phase	Debra Kristensen, PATH
	Process for the final prioritisation phase	Birgitte Giersing, WHO
•	Q&A	Dr. Sotiris Missailidis
•	Panel discussion - 'How VIPS may help drive vaccine delivery innovations but what else is needed beyond the prioritisation and communication?'	Dominic Hein, Gavi
•	Q&A	Dr. Sotiris Missailidis



Under Phase II the 9 short-listed innovations will be further analysed for final prioritisation of 3-4 innovations

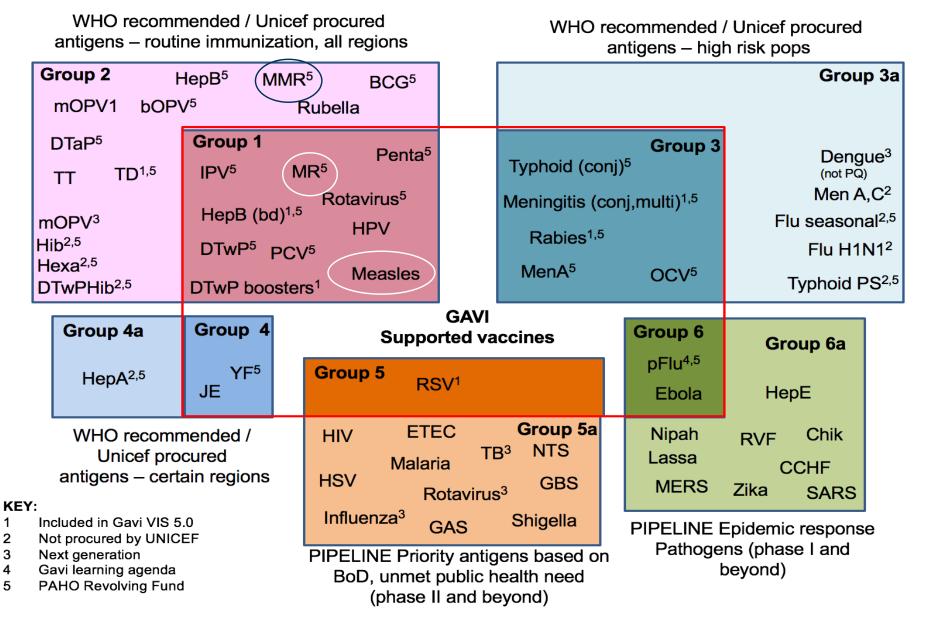
BILL&MELINDA GATES foundation

¹ Purpose is to prioritise innovations "themselves", "as platforms", however it will be signaled for which individual vaccines or types of vaccines the innovation is seen to be most valuable.

Landscape of vaccines in VIPS scope

Vaccine antigens and categorisation

WHO recommended / Unicef procured antigens - routine immunization, all regions


WHO recommended / Unicef procured antigens – high risk pops

	Group 2 HepB ⁵ MMR ⁵ BCG ⁵ mOPV1 bOPV ⁵ Rubella					Grou	р За	
	DTaP ⁵ TT TD ^{1,5} mOPV ³ Hib ^{2,5} Hexa ^{2,5} DTwPHib ^{2,5}	Group 1 IPV ⁵ HepB (bd) ¹ DTwP ⁵ PC DTwP boost	HPV CV ⁵ Measles		Typhoid (cor Meningitis (c Rabies ^{1,5} MenA ⁵		Deng ^(not PQ) Men A Flu season Flu H1 Typhoid F) A,C ² al ^{2,5} N1 ²
	Group 4a HepA ^{2,5}	Group 4 YF ⁵ JE	Suppor Group 5 RS		ccines	Group 6 pFlu ^{4,5} Ebola	Group 6a HepE	
KEY	WHO recommended / Unicef procured antigens – certain regions			т	₃ GBS	Nipah Lassa MERS	RVF Chik CCHF Zika SARS	
1 2 3 4 5	Included in Gavi VIS 5.0 Not procured by UNICEF Next generation Gavi learning agenda PAHO Revolving Fund		Influenza ³ G PIPELINE Priori BoD, unmet p (phase II	bublic h	ealth need	PIPELINE Epidemic respon Pathogens (phase I and beyond)		e

Landscape snapshot of antigen categorisation to map overlap

Vaccine antigens and categorisation

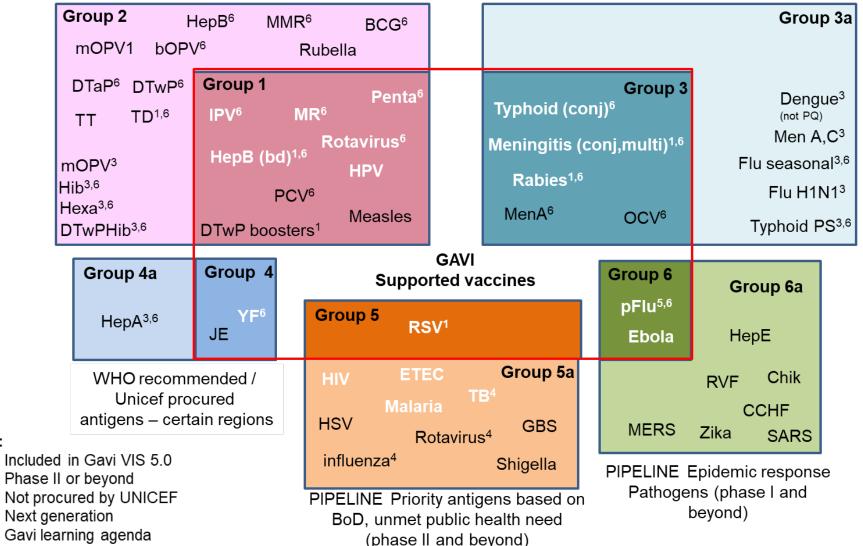
Distribution of the 17 priority vaccines for Phase II within the landscape of 48 vaccines

WHO recommended / Unicef procured antigens – routine immunization, all regions

KEY:

2

3


4

5

6

PAHO Revolving Fund

WHO recommended / Unicef procured antigens – high risk pops

Evaluation framework for Phase II (1/2)

Criteria

Indicators

		 Vaccine efficacy
	Health Impact	Vaccine effectiveness
		 Ability of the innovation to withstand heat exposure¹
		 Ability of the innovation to withstand freeze exposure¹
	Coverage and equity impact	 Number of fully or partially immunised individuals (relative to target pop)
		 Ease of use²
		 Presentation which helps prevent missed opportunities due to
Primary		reluctance to open MDV without preservative
ranking	Safety impact	 Number of vaccine product-related adverse events
criteria		 Likelihood of contamination²
	Economic costs (i.e. Commodity, Delivery and Introduction and recurrent costs)	 Total cost of a vaccine regimen with the innovation, including wastage
		 Total cost of delivery technology(ies) used for the vaccine regimen, including wastage
		 Total cost of safety boxes used for the vaccine regimen, incl wastage
		 Total cost of storage and transport of commodities (per vaccine regimen)¹
		 Total cost of the time spent by staff (per vaccine regimen)¹
		 Total cost of introduction and recurrent costs (not otherwise accounted for)¹

¹ Same indicators as for Phase I but further assessed under Phase II due to the antigen/vaccine pairing

² This indicator is re-assessed in Phase II only when the comparator for a specific vaccine is a MDV, requiring a new evaluation – The comparator SDV is assessed in Phase I

Evaluation framework for Phase II (2/2)

Criteria

Indicators

Secondary ranking criteria ¹	Technology readiness	 Clinical development pathway complexity Technology development challenges Regulatory pathway complexity Complexity of manufacturing the innovation Robustness of the innovation pipeline
	Commercial feasibility	 Potential breadth of market size Existence of partnerships to support development and commercialisation Known barriers to global access to the innovation Stakeholders' interest

¹ These criteria will be evaluated in an absolute manner, not relative to a comparator.

In Phase II, VIPS is engaging with the Delivery Technologies Working Group (DT-WG)

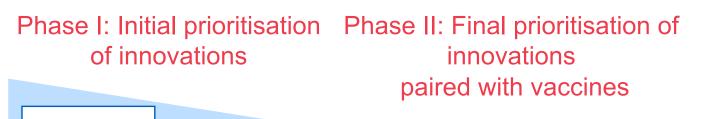
- Platform for **industry and the public sector** to engage on the presentation, packaging, and delivery aspect of vaccine products.
- Inform industry about LMIC programmatic preferences & operational realities.
- Optimise innovation of immunisation products for public-sector use.
- Sensitize the public sector to **industry constraints and economic realities** of investing in product development.

Consultations objectives

 Update broader set of immunisation stakeholders, including industry, on VIPS.

VACCINE

 Obtain feedback on VIPS prioritised innovations from the perspective of technical feasibility, manufacturability, regulatory hurdles.


A final report will be published by Q3/Q4 2020

December 2018 – June 2019

July 2019 - March 2020

April-December 2020

Publication of a **final** report:

- Process and methodology;
- Most valuable innovations including rationale, recommendations;
- Inform research agenda.
- All assessments will be made public.

BILL&MELINDA GATES foundation

¹ Purpose is to prioritise innovations "themselves", "as platforms", however it will be signaled for which individual vaccines or types of vaccines the innovation is seen to be most valuable.

Catalyzing product development of vaccine technology innovations: Vaccine Innovation Prioritisation Strategy

Agenda

Το	pic	Presenter
•	The Alliance VIPS initiative	Marion Menozzi, Gavi
	Nine prioritised innovations from the VIPS initial prioritisation phase	Debra Kristensen, PATH
•	Process for the final prioritisation phase	Birgitte Giersing, WHO
	Q&A	Dr. Sotiris Missailidis
(Panel discussion - 'How VIPS may help drive vaccine delivery innovations but what else is needed beyond the prioritisation and communication?'	Dominic Hein, Gavi
•	Q&A	Dr. Sotiris Missailidis

