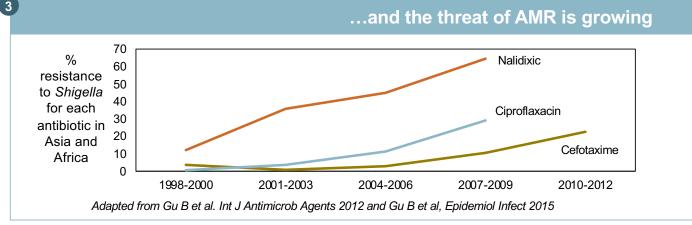
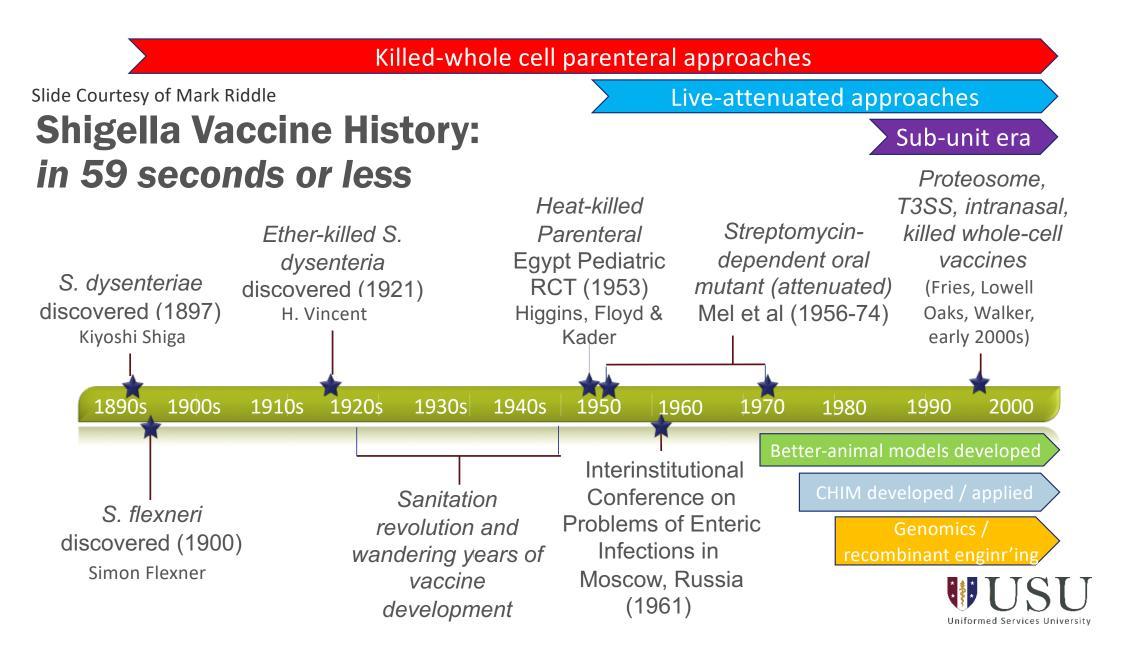

BILL& MELINDA GATES foundation


Novel Shigella Vaccine Candidates

Cal MacLennan Bill & Melinda Gates Foundation DCVMN Annual Meeting 23 October 2019 Rio de Janeiro

© 2014 Bill & Melinda Gates Foundation

THE CASE FOR A SHIGELLA VACCINE



From GEMS:

- Only 35% of Indian Shigella isolates were sensitive to ciprofloxacin (WHO-recommended antibiotic for Shigella dysentery)
- > 80% of African Shigella isolates were resistant to cotrimoxazole (most commonly prescribed antibiotic in African sites)

CONFIDENTIAL

Source: GEMS; MAL-ED; AMR data adapted from Gu et al. 2012 and 2015

PHASE 3 EFFICACY WITH SHIGELLA SONNEI CONJUGATE VACCINE IN YOUNG ADULTS

(Cohen D et al. Lancet 1997)

Young Israeli military recruits

S. Sonnei LPS O-antigen – rEPA conjugate 25 ug/75 ug – single dose

Overall Vaccine Efficacy 74% (95%Cl 28-100)

Protection GMT IgG to S. sonnei O-antigen 12761 units (day 17)

Vaccine failure GMT IgG to S. sonnei O-antigen 4904 units (day 17)

Clinical Proof of Concept for O-antigen-based approach

Note – this was the **1**st **generation** Shigella conjugate vaccine.

'lattice-type' conjugate with random conjugation chemistry.

 \rightarrow large complex vaccine structure with limited batch-to-batch consistency

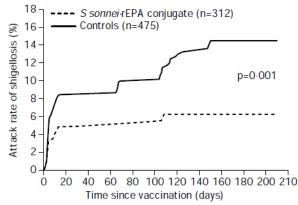
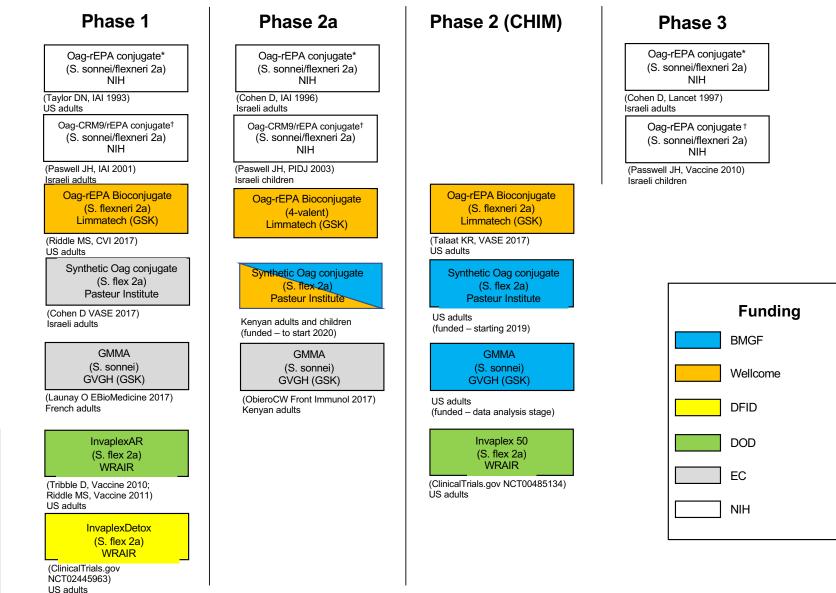


Figure 2: Attack rates of culture-proven *S* sonnei shigellosis in recipients of *S* sonnei conjugate vaccine and controls in groups A–D

PHASE 3 EFFICACY WITH SHIGELLA SONNEI CONJUGATE VACCINE IN ISRAELI CHILDREN DOWN TO 3 YEARS AGE

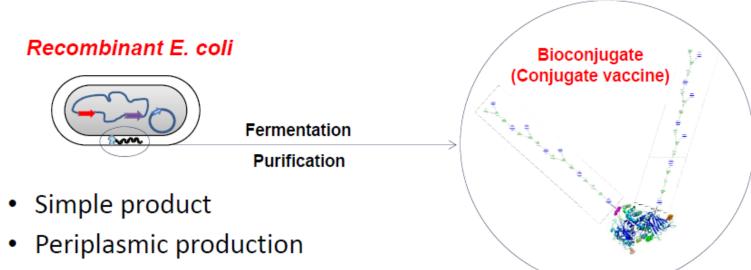

(Passwell JH et al. Vaccine 2010)	Age	Efficacy	(95% CI)		Р
Bivalent vaccine S. sonnei/S. flex 2a					
2 doses 6 weeks apart. 2 year follow up	a. Shigella sonnei 1-2 years	3.8%	(101.1.4	6.5)	0.91
71.1% vaccine efficacy against S. sonnei diarrhea	>2-3 years >3-4 years	35.5% 71.1%	(-56.4, 7 (-4.43, 9	· ·	0.33 0.04
at 3-4 yrs age , but not < 3yrs	All ages	27.5%	(-16.9, 5	54.0)	0.18
(Insufficient S. flex 2a diarrhea cases for efficacy)		G.M. IgG anti-I	.PS (EU)*		
		Vaccine	Age (years)	Ν	S. sonnei
		S. sonnei	1-2	38	1.40
Ioses 6 weeks apart. 2 year follow upa. Shigella so 1-2 years >2-3 years >3-4 years >3-4 years All ages			>2-3 >3-4	44 29	3.71 6.38

→ Important for new O-antigen-based vaccines to induce high titers of IgG to O-antigen

(*different assay to one used in Cohen et al 1997 – indicates urgent need for international assay and standards)

Target Product Profile for Shigella Vaccines

Variable	Minimum	Optimistic
	The minimal target should be considered as a potential go/no go decision point.	The optimistic target should reflect what is needed to achieve broader, deeper, quicker global health impact.
Indication*	Prevention of moderate to severe diarrhea due to Shigella in children six months to two years of age	Prevention of moderate to severe diarrhea due to Shigella in children six months to five years of age.
Target Population*	Children six months to two years of age.	Children six months to five years of age.
Dosing Schedule and Route of Administration*	EPI schedule - 2 doses + booster IM route.	EPI schedule - 1 dose IM route.
Safety	Safety and reactogenicity profile should be clinically acceptable Contraindications should be restricted to know hypersensitivity to any of the vaccine components	Safety and reactogenicity profile should be clinically acceptable. Contraindications should be restricted to know hypersensitivity to any of the vaccine components
Efficacy*	50% efficacy against moderate to severe diarrhea caused by <i>Shigella</i> strains in the vaccine	70% efficacy against moderate to severe diarrhea caused by all Shigella strains
Duration of Protection	To 2 years, with boosting possible to extend protection	To 5 years.
Cost	\$1 - \$3	< \$1
Co-administration	With EPI vaccines without interference	With EPI vaccines without interference
Vaccine volume	0.5 ml/dose	0.5 ml/dose
Target Countries	GAVI-eligible and lower-middle income countries	GAVI-eligible and lower-middle income countries
Onset of immunity	2 weeks after 2 doses	2 weeks after 1 dose
Indirect (herd) protection	No	Yes


Glycoconjugate

Outer Membrane vesicle

Invasin Complex

7

LIMMATECH (GSK) – SHIGELLA BIOCONJUGATE

• Site specific, enzymatic conjugation

LIMMATECH (GSK) – BIOCONJUGATE PHASE 1 & CHIM

Phase 1 – US adults (Riddle MS et al CVI 2017)

S flex 2a O-antigen/EPA 10 ug/50 ug

2 doses 4 weeks apart

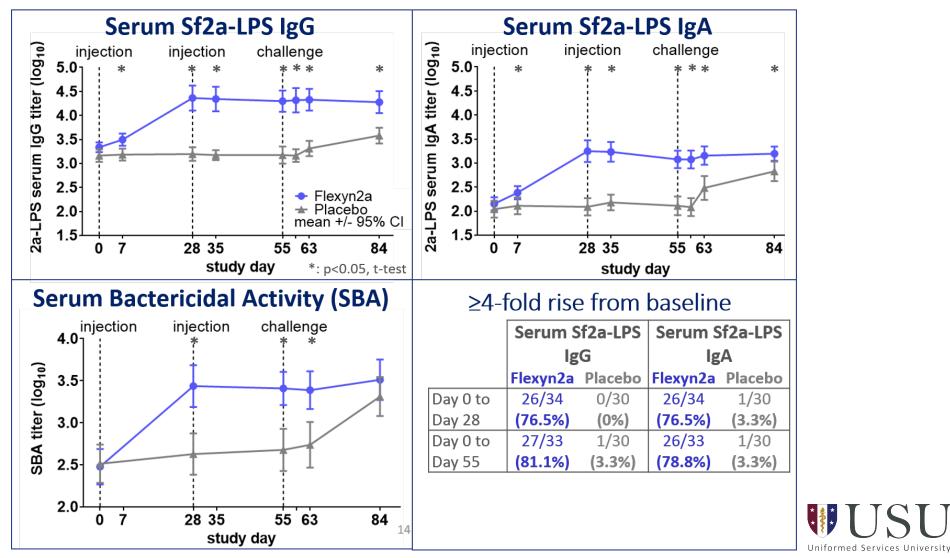
19-fold increase in O-antigen IgG titers

CHIM – US adults (Talaat KR et al VED Conference 2017)

2 doses 4 weeks apart

- 30% (non-significant) efficacy at preventing shigellosis (primary endpoint)
- **52% efficacy** at preventing moderate and severe shigellosis
- 72% efficacy at presenting more severe diarrhea
- Correlation between serum IgG and IgA to O-antigen and protection

	Vaccinatio	on group				
Immune response and	Flexyn2a ($n = 12$)					
sample day	GMT	Responders ^c	P value ^{d}			
Anti-Sfl2a LPS Serum IgG						
Day 0	2,397		NS			
Day 28	45,614	11/12	< 0.0001			
Day 56	40,637	11/12	< 0.0001			


'Flexyn2a, a candidate bioconjugate vaccine against *Shigella flexneri* 2a induces protective immune response in a controlled human infection model'

Kawsar R. Talaat¹, Cristina Alaimo², A. Lou Bourgeois¹, Robert W. Kaminski³, Anita Dreyer², Chad K. Porter⁴, Subhra Chakraborty¹, Kristen A. Clarkson³, Jessica Brubaker¹, Daniel Elwood¹, Rahel Frolich², Barbara DeNearing¹, Hailey Weerts³, Brittany Feijoo¹, Jane Halpern¹, David Sack¹, Mark S. Riddle⁴, Patricia Martin² and Veronica Gambillara Fonck²

(¹ Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA; ² LimmaTech Biologics AG, Schlieren, Switzerland; ³ Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; ⁴ Naval Medical Research Center, Silver Spring, Maryland, USA)

Flexyn2a Immunogenicity

Talaat VED 2017

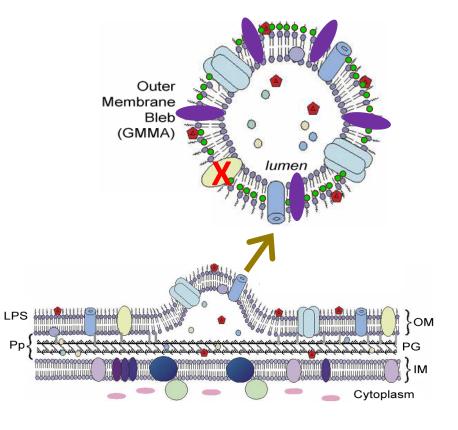
LIMMATECH BIOCONJUGATE SUMMARY

Strengths

- Most advanced candidate
- Bioconjugate technology conjugation occurs within bacteria
- Purification as for recombinant protein

GENERALIZED MODULES FOR MEMBRANE ANTIGENS (GMMA) PLATFORM

Pure outer membrane buds by genetic engineering $(toR^-) \rightarrow$ efficacy & affordability of whole cell vaccine without the side effects

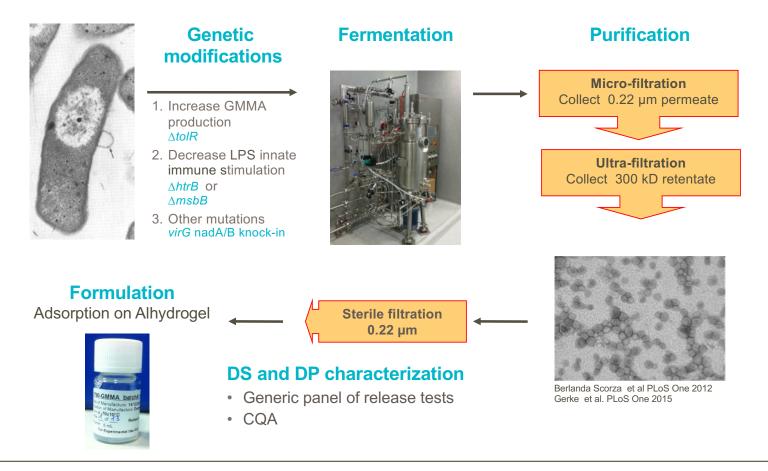

Modify toxic component (msbB-)

Lipid A of LPS

Stabilize Sonnei plasmid

4-valent GMMA formulation (*S. sonnei, S. flexneri* 2a, 3a and 6) immunogenic in mice

S. sonnei prototype safe and immunogenic in phase 1; descending age and challenge trial start 2017



Gerke C et al. PLoS One 2015

GMMA manufacturing – Generic, simple and robust

gsk

Building on Shigella GMMA and a technology suited to sub-Saharan Africa

GVGH (GSK) GMMA – PHASE 1 & 2

Phase 1 - French adults (Launay O et al EBioMedicine 2017) Dose-escalating Phase 1 study with monovalent S. sonnei GMMA O-antigen/protein 0.059/1, 0.29/5, 1.5/25, 2.9/50 & 5.9/100 µg 3 vaccinations, 4 weeks apart Median GMT post 3rd dose for 3 highest dose groups = 305 ELISA U Phase 2 - Kenyan adults – high pre-existing antibody titers levels boosted

CHIM study with current monovalent S. sonnei GMMA Interim efficacy data expected November 2019

Research Paper

Safety Profile and Immunologic Responses of a Novel Vaccine Against Shigella sonnei Administered Intramuscularly, Intradermally and Intranasally: Results From Two Parallel Randomized Phase 1 Clinical Studies in Healthy Adult Volunteers in Europe

Odile Launay ^{a.g.h.1}, David J.M. Lewis ^{b,1,2}, Alessandra Anemona ^c, Pierre Loulergue ^{a.g.h}, Jo Leahy ^b, Antonella Silvia Sciré^c, Anaïs Maugard^{a,g,h}, Elisa Marchetti^c, Stefano Zancan^{c,3}, Zhiming Huo^b Simona Rondini ^c, Rachid Marhaba ^e, Oretta Finco ^d, Laura B. Martin ^c, Jochen Auerbach ^c, Daniel Cohen ^f, Allan Saul^c, Christiane Gerke^{c,4}, Audino Podda^{c,*}

A Phase 2a Randomized Study to **Evaluate the Safety and** Immunogenicity of the 1790GAHB **Generalized Modules for Membrane** Antigen Vaccine against Shigella sonnei Administered Intramuscularly **OPEN ACCESS** to Adults from a Shigellosis-Endemic Country David J. M. Lewis.

Imperial College London, United Kinadom Reviewed by Anita S. Ner Harvard Medical School. United States

Edited by

Christina W. Obiero1, Augustin G. W. Ndiaye2, Antonella Silvia Sciré2, Bonface M. Kaunvangi¹, Elisa Marchetti², Ann M. Gone¹, Lena Dorothee Schütte³, Daniele Riccucci², Joachim Auerbach², Allan Saul², Laura B. Martin², Philip Bejon⁴, Patricia Njuguna^{1,5} and Audino Podda^{2*}

GSK GMMA VACCINE - SUMMARY

Strengths

- Simplicity of manufacture and low COGs
- Multiplicity of Shigella antigens delivered to immune system
- Potentially highly immunogenic due to self-adjuvanting effect

NEW CONJUGATES

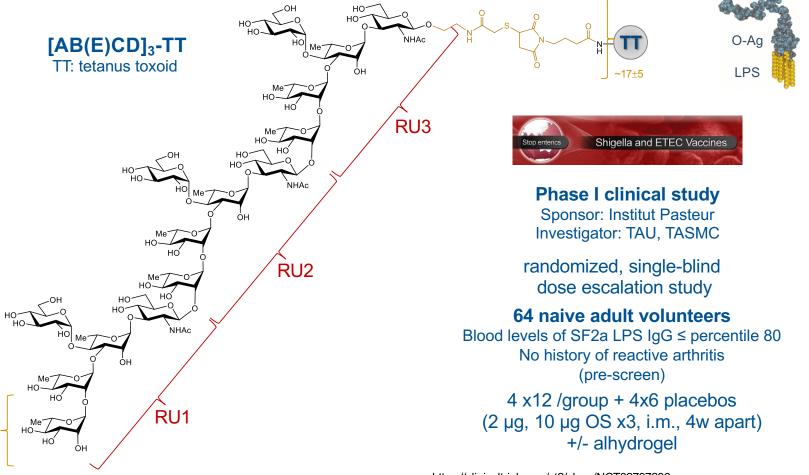
Synthesis, characterization, and immunogenicity in mice of *Shigella sonnei* O-specific oligosaccharide-core-protein conjugates

John B. Robbins^{a,1}, Joanna Kubler-Kielb^a, Evguenii Vinogradov^b, Christopher Mocca^a, Vince Pozsgay^a, Joseph Shiloach^c, and Rachel Schneerson^a

^aNational Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892; ^bInstitute for Biological Sciences, National Research Council, 100 Sussex Drive, Ottawa, ON, Canada K1A 0R6; and 'National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892

·····

Robbins JB et al PNAS 2009

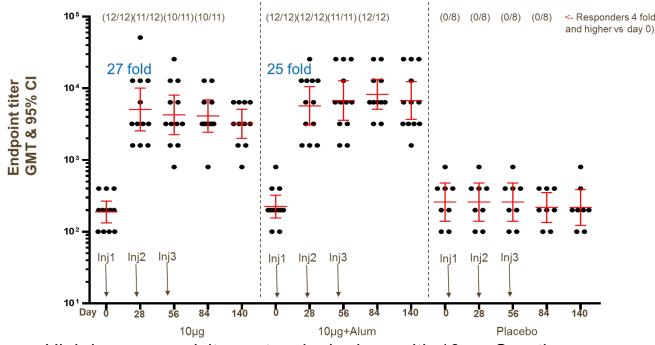

Sun-type v Lattice-type configuration

Conjugates with shorter O-antigens induce higher IgG O-antigen titers in mice

-	_	
	\sim	
101		
10	` ,	
- 19	ς,	

					-			
		Molecular mass	Molecular mass	No. O-SPC chains per	Anti-LPS		Anti-rDT	
No.	Conjugate	of conjugate, kDa	of sugar part, kDa	protein molecule	Second injection	Third injection	Second injection	Third injection
1	BSA/O-SPC-F2*	93.1	22.2	7	79	366	ND	ND
2	rDT/O-SPC-F2	80.6	18.5	6	5	392	2	91
3	rDT/O-SPC-F2	99.5	37.4	12	11	150	0.1	2
4	BSA/O-SPC-F3 [†]	95.2	24.3	11	ND	ND	ND	ND
5	rEPA/O-SP [‡]	ND	ND	ND	11	67	ND	ND

A synthetic carbohydrate-based vaccine candidate against *S. flexneri* 2a produced for a phase I clinical trial



https://clinicaltrials.gov/ct2/show/NCT02797236

Bioconjugate Chem 27 883 (2016)

Institut Pasteur

INSTITUTE PASTEUR SYNTHETIC CONJUGATE: ~27-FOLD RESPONSE POST 10 μg SINGLE DOSE

Synthetic conjugate:

Synthetic production of S. flex 2a O-antigen

3 repeating units

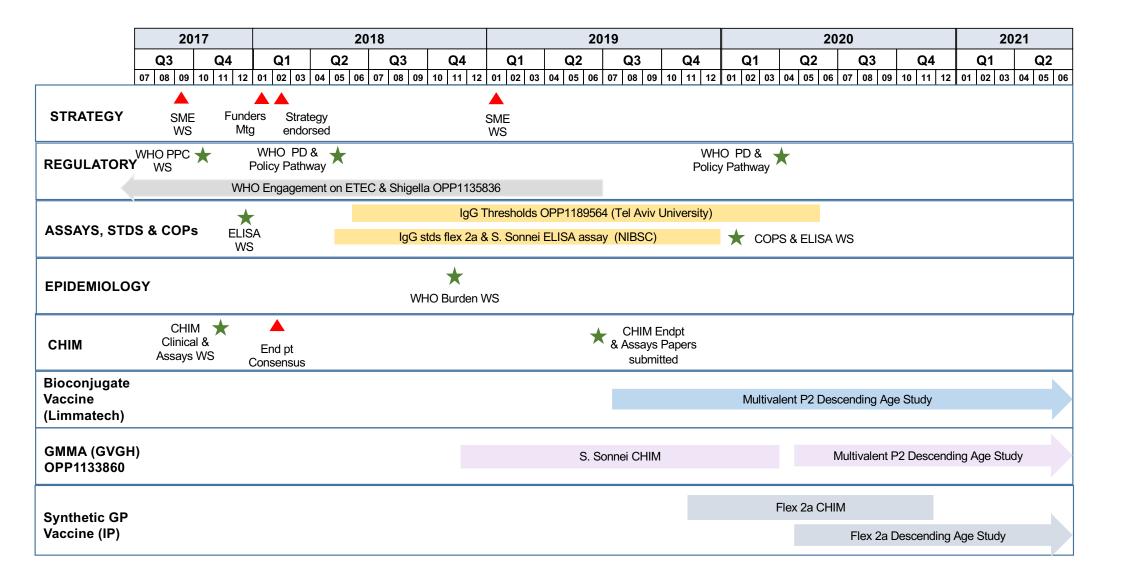
Optimised design for immunogenicity

Conjugated to tetanus toxoid.

'Sun-type' configuration

- High immunogenicity post a single dose with 10 ug O-antigen
- 27-fold increase in IgG titer to O-antigen without alum (higher than 1st generation conjugates)
- High avidity and functional activity of antibodies
- S. flex 3a conjugate already produced. S. sonnei and S. flex 6 and 1b in progress.

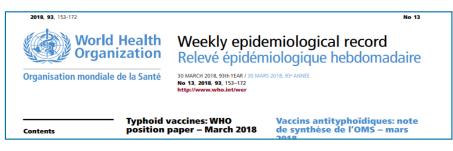
INSTITUTE PASTEUR SYNTHETIC CONJUGATE CURRENT ASSESSMENT


Strengths

- Defined short O-antigen
- Promising strategy with likely improved immunogenicity compared with first generation NIH conjugates vaccines
- Does not require bacterial fermentation small footprint for production

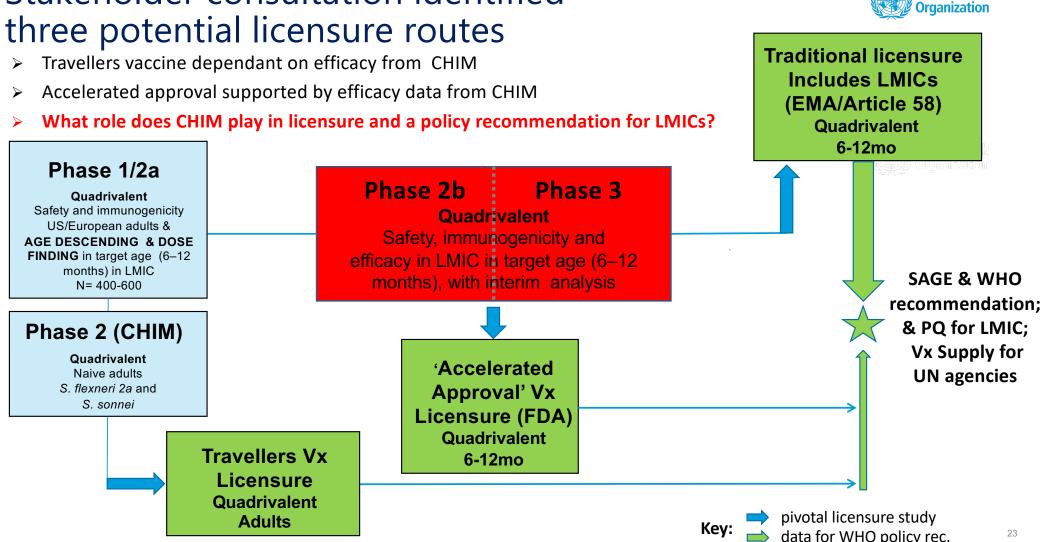
IMMUNOGENICITY STUDIES IN TARGET POPULATION

Are candidates sufficiently immunogenic to confer protection in LMIC children?


- No parenteral Shigella vaccine has been tested to date in the target population: children 6 to 12 months in LMICs.
- Must evaluate immunogenicity in this target population, as soon as safety has been established in naive adults
- This requires a safety and immunogenicity study in descending age groups (to <12 months) in LMICs.
- Age-descending studies of the three leading O-antigen-based Shigella vaccines (Limmatech, GVGH and Institut Pasteur) are being co-funded by BMGF and Wellcome

DOES THE SHIGELLA CHIM HAVE A ROLE IN LATE PRODUCT DEVELOPMENT AND LICENSURE/POLICY RECOMMENDATION?

Precedent:


- Role of CHIM in cholera and typhoid conjugate vaccine licensure/recommendation
- No established regulatory pathway for using CHIM to facilitate licensure/policy recommendation
- Advice from regulators: all vaccines and diseases needed to be treated separately
- For a first Shigella vaccine: need for field data for safety and efficacy

http://apps.who.int/iris/bitstream/handle/10665/272272/WER9313.pdf?ua=1

DA U.S. FOOD & DRUG					A to Z Index Foll	Follow FDA En Español A			
	Home	Food	Drugs	Medical Devices	Radiation-Emitting Products	Vaccines, Blood & Biologics	Animal & Veterinary	Cosmetics	Tobacco Products
News & Events									
FDA News Release									
	FDA approves vaccine to prevent cholera for travelers							Media	

https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm506305.htm

Stakeholder consultation identified

World Health

SUMMARY

- Multiple O-antigen-based subunit vaccines in clinical trials
- 3 lead candidates, each employing a different novel technological approach
- Evaluated for efficacy in monovalent formulation in CHIM studies
- All funded for descending-age studies into target population (LMIC children 9 months 2 years)
- Two in quadrivalent format
- Regulatory clinical pathway under discussion WHO-led
- Work on parallel enabling activities international ELISA and serum standard
- Each candidate likely in need of a manufacturing partner for late-stage clinical development

BACK-UP SLIDES

SHIGELLA: STRATEGIC SHIFTS IN OUR APPROACH

2007-2014: Broad portfolio approach

 PATH EVI (1-2) re-ignites the field and evaluates ~50 ETEC & Shigella vaccine constructs.

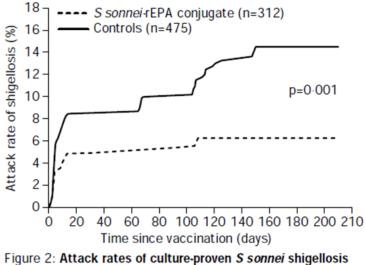
2014-2016: Toward a combination ETEC & *Shigella* vaccine

- 2014: EVI 3 funded; portfolio down-selected to 9 candidates. Lead oral ETEC and *Shigella* candidates with combination potential.
- 2015: GSK GMMA platform funded outside of EVI.

2017-2018: Shifting focus towards Shigella

- No go decision for lead EVI ETEC candidate (ETVAX), based on – Phase 2a data.
- No go decision for lead EVI Shigella candidate (TSWC), given manufacturing delays and ETVAX no go.

Q1/Q2 2018 decision on future investment in **ETEC** vaccines, pending additional burden data.


New Shigella vaccine approach:

- Focus on 2nd generation O-antigen vaccine candidates
- New regulatory approach to accelerate vaccine licensure (~2023)
- New partner: Gates MRI.

New 3-5 year goals:

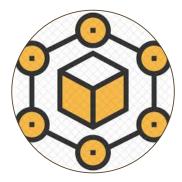
- 1. Advance lead O-antigen-based Shigella vaccine candidates to efficacy in CHIM and immunogenicity in target population by 2021
- Advance enabling technologies (e.g. validated international ELISA, human challenge models) and accelerate regulatory pathway to achieve licensure by 2023
- Identify new target antigens to support 3rd generation Shigella vaccine development by 2020
- 4. Prepare the evidence and policy in support of a future delivery strategy of *Shigella* vaccines

SHIGELLA: 2ND GENERATION O-ANTIGEN-BASED VACCINES

in recipients of *S* sonnei conjugate vaccine and controls in groups A–D

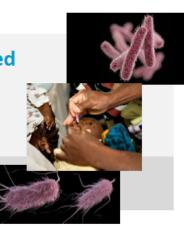
20 years ago, a 1st generation NIH 'lattice-type' *S*. sonnei conjugate vaccine gave 74% efficacy among Israeli military. Protection was strongly associated with the IgG antibody response to LPS O-antigen...

> ...but many years later, the same vaccine failed to protect children <3 years. Loss of protection closely associated with decreased induction of LPS O-antigen IgG (Passwell JH et al Vaccine 2010)


Hypothesis: a 2nd generation vaccine that induces higher levels of IgG to O-antigen will protect young children...

Lead candidates:

- 1. Limmatech/GSK Bioconjugate vaccine
- 2. GVGH/GSK GMMA vesicle vaccine
- 3. Pasteur Institute Synthetic O-antigen conjugate vaccine


Key messages: 1. O-antigen-based conjugate vaccines can protect against Shigella 2. serum IgG titer to Shigella O-antigen is a strong associate of protection

PREFERRED PRODUCT CHARACTERISTIC

ETEC and Shigella Vaccine Preferred Product Characteristics (PPCs): Global Stakeholder Consultation Portugal: 6-7 October 2017

Birgitte Giersing, PhD Initiative for Vaccine Research Department of Immunization, Vaccines and Biologicals

To develop a safe, effective, affordable vaccine to reduce diarrhea, dysentery and morbidity caused by Shigella in children under 5 years of age, in LMICs

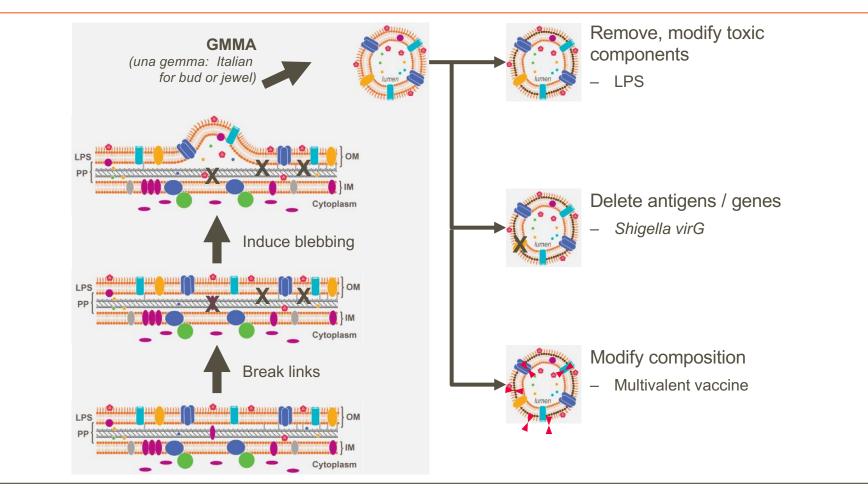
Shigella bioconjugate vaccine

- -S. dysenteriae O1 phase 1 in 2010 (Hatz et al., Vaccine 2015)
- -S. flexneri 2a phase 1 and 2b (Wellcome Trust program) 2014-2016

-Phase 1 results obtained:

-Safety and immunogenicity (*Riddle et al., Clin Vaccine Immunol* 2016)

-Phase 2b results obtained:


–Proof of concept for early indication of efficacy (results will be presented at VED 2017 and Human Challenge Workshop 2017)

-Supportive data of serological correlation with protection against clinical shigellosis

-Multivalent Shigella conjugate including the four most-dominant serotypes; projected coverage - Sf2a, Sf3a, Sf6 and *S. sonnei* in descending-age study to chidlren 9 months to two years in Kenya

From GMMA theory to GVGH examples

Simple to prepare but capable of sophisticated manipulation

GSK Vaccines Institute for Global Health

GVGH (GSK) GMMA

OPEN a ACCESS Freely available online

PLos one

High Yield Production Process for *Shigella* Outer Membrane Particles

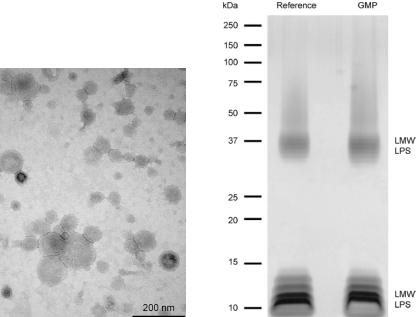
Francesco Berlanda Scorza^{1¤}, Anna Maria Colucci¹, Luana Maggiore¹, Silvia Sanzone¹, Omar Rossi¹, Ilaria Ferlenghi², Isabella Pesce¹, Mariaelena Caboni¹, Nathalie Norais², Vito Di Cioccio¹, Allan Saul¹, Christiane Gerke^{1*}

Production of a *Shigella sonnei* Vaccine Based on Generalized Modules for Membrane Antigens (GMMA), 1790GAHB

Christiane Gerke¹*, Anna Maria Colucci¹, Carlo Giannelli¹, Silvia Sanzone¹, Claudia Giorgina Vitali², Luigi Sollai¹, Omar Rossi¹, Laura B. Martin¹, Jochen Auerbach¹, Vito Di Cioccio¹, Allan Saul¹

1 Sclavo Behring Vaccines Institute for Global Health S.r.l., Siena, Italy, 2 Novartis Vaccines and Diagnostics, S.r.l., Siena, Italy

Gerke C et al PLoS One 2016


Up to 5 O-antigen repeat units per LPS molecule

Low O-antigen content - Protein:O-antigen ratio 16:1

<10% of LPS molecules have O-antigen

Berlanda Scorza F et al PLoS One 2012

Novel O-antigen vaccine strategy Enriched for outer membrane proteins Simplified production process Potential very low cost of good

Synthetic carbohydrates vaccine for Shigella

- Homogeneous, well defined oligosaccharides (OS) as alternative to conjugates of detoxified LPS
- SF2a-TT15
- Optimum OS selected on basis of immunogenicity testing and protection in mice.
- Phase 1 initiated 2Q2016 (10 and 2 mg/dose + alum 3 doses at 3 week intervals
- Financial support: EC-FP7 STOPENTERICS

Data Courtesy of Armelle Phalipon, Institut Pasteur