

ASEPTIC BLOW-FILL-SEAL FILL/FINISH TECHNOLOGY AND VACCINES

Developing Countries Vaccine Manufacturers' Network

DCVMN 20th Annual General Meeting Rio de Janeiro, Brazil 21st-23rd October 2019

Tim Kram, General Manager, Rommelag USA, Inc.

Disclaimer:

This presentation reflects the views of the author and should not be construed to represent Rommelag's views or policies

PRESENTATION OVER VIEW

- 1. General Introduction to Blow/Fill/Seal Advanced Aseptic technology
- 2. Blow/Fill/Seal, a world wide technology
- 3. Current status: Vaccines and Blow/Fill/Seal
- 4. Testing Capabilities

Developing Countries Vaccine Manufacturers Network

WHY BLOW/FILL/SEAL

Reduce the cost of the delivered dose

- Current standard is multi-dose glass vials
- Breakage 10 doses lost
- Wastage 6 hours to use all 10 doses

Goal \rightarrow Lower cost for *Dose Delivered* to GAVI countries

Practical industry considerations:

- Glass quality going down higher rejection rate in production
- High quality glass cost going up increased manufacturing cost

WHY BLOW/FILL/SEAL

Reduce the cost of the delivered dose

- BFS is a known technology
 - 50 years in pharmaceutical manufacturing
- Very high aseptic assurance
 - Recognized Advanced Aseptic Technology*
- High capacity, low cost production
 - +4 billion aseptically filled drug products supplied to US market today
- * USP and US FDA

ROMMELAG BLOW/FILL/SEAL TECHNOLOGY TIM KRAM

Commitment to Aseptic Fill/Finish Technology

Developing Countries Vaccine Manufacturers Network

ag · 2019-10-21 · 8

ROMMELAG - WORLD WIDE PRESENCE

Developing Countries Vaccine Manufacturers Network • 2019-10-21 • **10**

BLOW/FILL/SEAL BASICS

Rommelag

1962 – GERHARD HANSEN AND BLOW FILL SEAL

REGULATORY ACCEPTANCE FOR ADVANCED ASEPTIC BFS TECHNOLOGY

US FDA 2004 Aseptic Guidance

Blow-fill-seal (BFS) technology is an automated process by which containers are formed, filled, and sealed in a continuous operation. This manufacturing technology includes economies in container closure processing and reduced human intervention and is often used for filling and packaging ophthalmics, respiratory care products, and, less frequently, injectables. This appendix discusses some of the critical control points of this technology.

Guidance for Industry, Sterile Drug Products Produced by Aseptic Processing — Current Good Manufacturing Practice, September 2004

Blow/Fill/Seal Process: 4-13 seconds

- Medical Grade Polymer fed to a extrusion blow molding system
- Parison formed empty plastic tube
- Sterile filtered air prevents empty parison from collapsing

Melting polymer & extrusion of parison with sterile air

BLOW-FILL-SEAL (BFS) PROCESS: SHUTTLING

Blow/Fill/Seal Process: 4-13 seconds

- Container is formed
- The container is moved to the point of fill
- The point-of-fill is protected by overpressure sterile filtered air

Transfer in mould and cutting (overpressure of sterile air)

BLOW-FILL-SEAL (BFS) PROCESS: BLOWING

Blow/Fill/Seal Process: 4-13 seconds

• Sterile filtered air blown into bottle to complete formation

Container blow moulding with sterile air & filling

BLOW-FILL-SEAL (BFS) PROCESS: FILLING AND SEALING

Blow/Fill/Seal Process: 4-13 seconds

- Container is filled
- "head" mould closes and seals the container

Filling and Container closing

PRODUCTS UTILIZING BFS TECHNOLOGY

Rommelag

TRADITIONAL INJECTION METHODS WITH BFS AMPOULE WITH LUER CONNECTION

COMMON APPLICATIONS

COMMON BFS PRODUCTS

Developing countries racone Manufacturers Network Rommelag · 2019-10-21 · 21

402355 69 021 09.80

COMMERCIAL CONTAINERS FOR INJECTABLE PRODUCTS LUER CONNECTION FOR SYRINGE

Rommelag CMO

- <1 mL
- Advanced Aseptic
- Other designs being developed
- Glass ampoule replacement

HISTORY OF BLOW/FILL/SEAL WITH VACCINES

Rommelag

DILUENT PRODUCTS

Sterile Water for Injection

VACCINE COMPATIBILITY – NASAL LAV VACCINE 2007-2010

DOI:10.1111/irv.12027 www.influenzajournal.com

Original Article

Immunogenicity of a quadrivalent Ann Arbor strain live attenuated influenza vaccine delivered using a blow-fill-seal device in adults: a randomized, active-controlled study*

Eric A. Sheldon,^a Robert Jeanfreau,^b Joseph A. Sliman,^{c,†} Supoat Charenkavanich,^{d,†} Matthew D. Rousculp,^{e,†} Filip Dubovsky,^f Raburn M. Mallory^f

VACCINE COMPATIBILITY – NASAL LAV VACCINE 2007-2010

Results: Q/LAIV-BFS was immunologically noninferior to T/LAIV because the upper bounds for all four 95% confidence intervals (CIs) for post-dose strain-specific GMT ratios were less than the predefined margin of \leq 1.5. Secondary immunogenicity outcomes, solicited symptoms, and AEs were also comparable.

Strain	Q/LAIV		T/LAIV		GMT Ratio (T/LAIV / Q/LAIV)	
	Ν	GMT	Ν	GMT	Ratio	95% CI
A/H1N1	1176	8.1	586	7.7	0.95	0.87, 1.03
A/H3N2	1176	8.3	586	7.7	0.93	0.85, 1.00
B Yamagata	1176	60.3	294	54.1	0.90	0.79, 1.02
B Victoria	1176	27.4	292	26.7	0.97	0.87, 1.10

Conclusion: The immunogenicity and safety of Q/LAIV-BFS, as defined in this study, were comparable to those of T/LAIV in adults.

This study was sponsored by MedImmune.

VACCINE COMPATIBILITY – ORAL ROTA LAV 2012

- Multiple vaccines tested
- Statistically no difference between BFS and existing packaging
- Existing prefilled plastic tube
- GSK Australia converting to BFS

GlaxoSmithKline Australia VP and General Manager Geoff McDonald in the new vaccine facility. Picture Aaron Francis

BILL AND MELINDA GATES FOUNDATION GRANTS

Rommelag

PATH DEVELOPED PRODUCTION COSTS

Total cost of delivery – Rotavirus vaccine

Updates on Packaging and Delivery for Rotavirus and Oral Vaccines Presentation for the Ninth ARVAC Rotavirus Vaccine Manufacturers' Meeting Bangkok, Thailand, Jeff Sedita -PATH, June 22, 2017

VACCINES: WHY BLOW FILL SEAL

Container development grant

- Single dose per container:
 - No preservatives
 - Low wastage
 - Low breakage
 - Small cold chain footprint
- Low Cost of Goods
- Vaccine compatibility

CPAD DEVELOPMENT GRANT

- ApiJect Concept container
 - Double needle design

Developing Countries Vaccine Manufacturers Network

• Existing BFS container design

Manufacturers Network

GLOBAL GOOD DESIGN – REDUCED CONTAINER SIZE OPTIMIZED FOR COLD CHAIN

GRANT TO DEVELOP NEW DELIVERY FORMS

Rommelag Engineering

- CPAD Compact Auto Disable Device
- Replacement for single dose glass vial
- Rommelag Multi-Mono Dose Design

NEXT STEPS – NEW GRANT WORK CPAD DEVICE – COMPACT AUTO DISABLE DEVICE ApiJect development

GRANT TO DEVELOP NEW DELIVERY FORMS

Rommelag Engineering

• ApiJect current design

VACCINE COMPATIBILITY – INJECTABLE

Feasibility Assessment of Novavax RSV F vaccine with Maropack Cold BFS Process in Global Good Design Ampule

· Objective

 Provide feasibility assessment on aluminum phosphate adjuvanted RSV F vaccine in BFS as a potential WHO product presentation, with funding from Bill and Melinda Gates Foundation to Rommelag and Maropack.

- Scope
 - Primary: Evaluate aluminum phosphate adjuvanted RSV F vaccine compatibility/stability, potential leachables with BFS containers.
 - Stretch: Evaluate BFS fill system compatibility with recirculation system
- Outcome: Recommending further developing BFS as a potential WHO
 Product Presentation
 - RSV F vaccine stability profile in BFS similar to profiles in glass vials and syringes
 - · Minimal concern on potential leachables in simulated leachable study
 - BFS fill process compatible with a recirculation system critical for uniformity control

VACCINE COMPATIBILITY – INJECTABLE

Feasibility Assessment of Novavax RSV F vaccine with Maropack Cold BFS Process in Global Good Design Ampule

- · Feasibility study with Global Good BFS ampule design
 - 9 month/2-8 °C stability testing completed; continuing to 24 months
 - Stability profile in BFS, by ELISA, RP-HPLC, SDS-PAGE, similar to profiles in glass vial and PFS
- Further development of BFS container
 - · Modify design to fit with WHO pre-qualified auto-disable syringes
 - · Design target: similar use experience to glass vial
 - · User Requirements Specification based on
 - · Lesson learned from current BFS field study
 - WHO Generic Preferred Product Profile for Vaccines
 - · Assessing programmatic suitability of vaccine candidates for WHO prequalification
 - WHO Immunization in Practice
 - WHO Cold chain preference & vaccine vial monitor implementation

INVENTPRISE VACCINE TESTING

Rommelag CMO

- Successful stability trial
- Injectable vaccine
- Containing adjuvant

• Supported by Global Good

CONTACT INFO

Tim Kram Rommelag USA, Inc. <u>tim.kram@rommelag.com</u> 303-674-8333

Yves Schwander Director Development Rommelag CMO / Maropack AG Industriestrasse Briseck 4 · 6144 Zell · Switzerland T +41 41 989 74 60 · F +41 41 989 74 01 <u>Yves.Schwander@rommelag.com</u>

END

Rommelag