

Department of Health & Social Care

Imperial College London

The Department of Health and EPSRC Imperial Future Vaccine Manufacturing Research Hub

RNA Vaccines Dr Benjamin F Pierce

This research is funded by the Department of Health and Social Care using UK Aid funding and is managed by the Engineering and Physical Sciences Research Council (EPSRC, grant number: EP/R013764/1). The views expressed in this presentation are those of the author(s) and not necessarily those of the Department of Health and Social Care.

Introduction to the Imperial Future Vaccine Manufacturing Research Hub

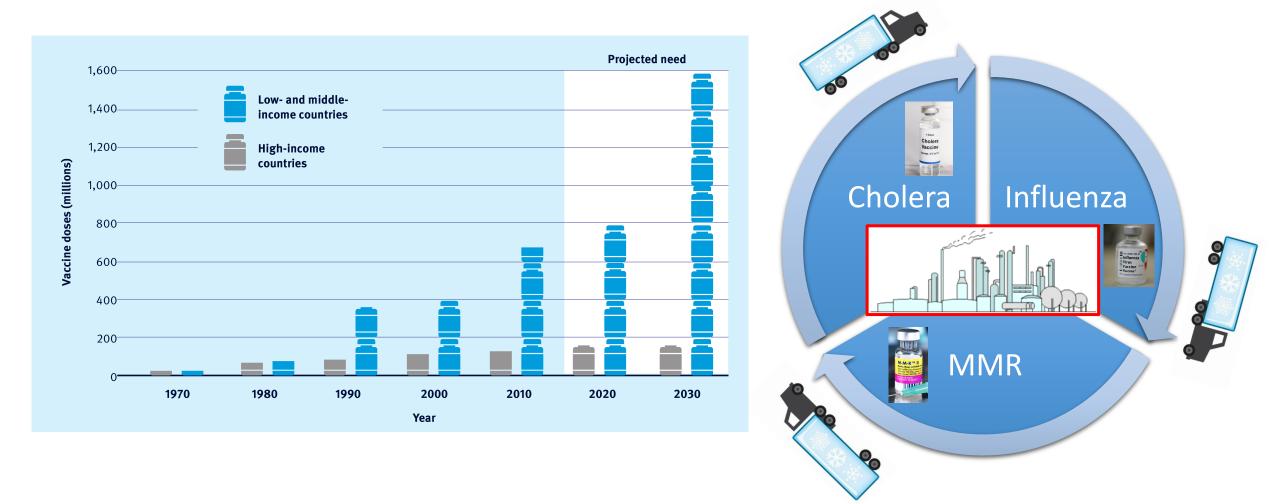


Figure (left) adapted from Rino Rappuoli, Steven Black, and David E Bloom. Science Translational Medicine. 2019. 11, eeaw2888.

Imperial Future Vaccine Manufacturing Research Hub and DCVMN

Quality by Design and Supply Chain Modelling Workshop organised / hosted by FVMR Hub *DCVMN Members from Developing Countries*

Hanoi, Vietnam 24 – 27 November 2019

Already 40 registered attendees!

Please check DCVMN website – Events tab

Imperial College London

CALL FOR EXPRESSION OF INTEREST

THE DEVELOPING COUNTRIES VACCINE MANUFACTURERS NETWORK'S (DCVMN) OPEN CALL FOR EXPRESSION OF INTEREST IN QC/QA TRAINING WITH IMPERIAL COLLEGE LONDON'S FUTURE VACCINE MANUFACTURING RESEARCH HUB (FVMR)

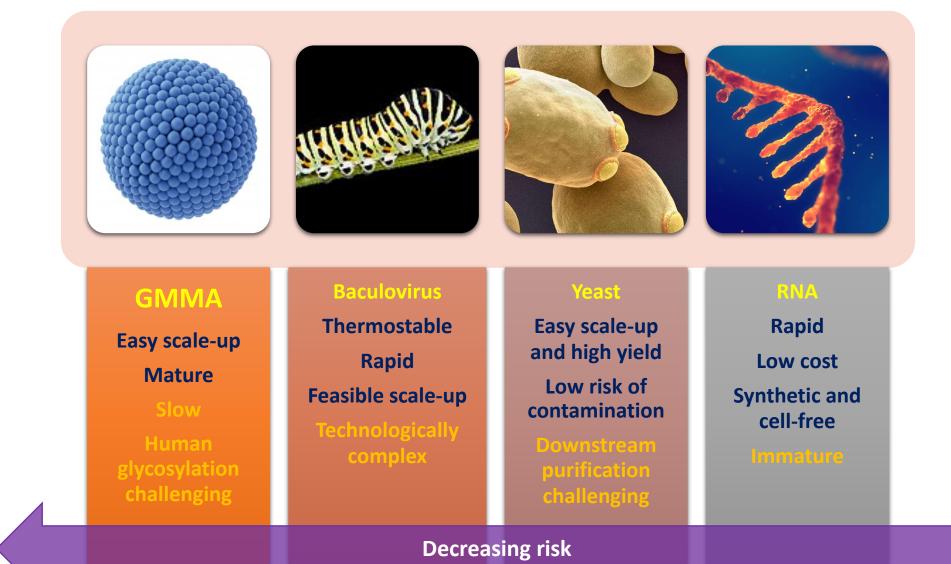
GUIDANCE

DCVMN International periodically sponsors technical assistance for its member companies. This assistance comes from internationally-reputable expert consultants and/or service firms

QC training at NIBSC – 2 page EoI by 30 Nov 2019. (see email from DCVMN late on 17 Oct or early on 18 Oct) Imperial College London

SECOND CALL FOR PROPOSALS

THE DEVELOPING COUNTRIES VACCINE MANUFACTURERS NETWORK'S (DCVMN) OPEN CALL FOR EXPRESSION OF INTEREST IN COLLABORATIVE PROJECTS WITH FUTURE VACCINE MANUFACTURING RESEARCH HUB (FVMR) GUIDANCE FOR APPLICANTS


DCVMN International periodically sponsors technical assistance provided to member companies by internationally-reputable expert consultants and/or service firms, to improve manufacturing technology, processes or quality control systems. The objective is to increase availability of high-quality vaccines globally.

. Purpose

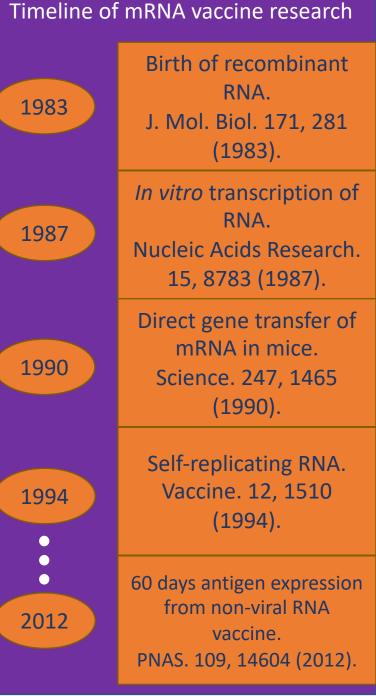
As announced on the DCVMN website in January 2018, a novel partnership has been launched to support responsible innovation for manufacturing in emerging countries and to improve the response to

DCVMN member companies will be notified once call is announced.

Hub vaccine innovative technologies

RNA Vaccines Background

<image>


RNA

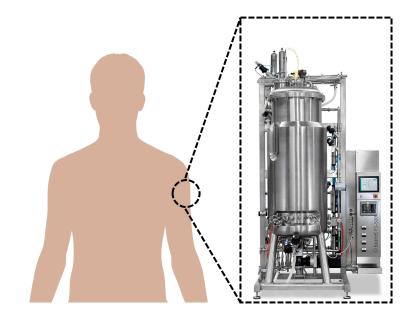
Rapid Low cost Synthetic and cell-free

Immature

The 'anti-hype' vaccine Nature Biotechnology. 35, 193 (2017).

Nucleic acid vaccines

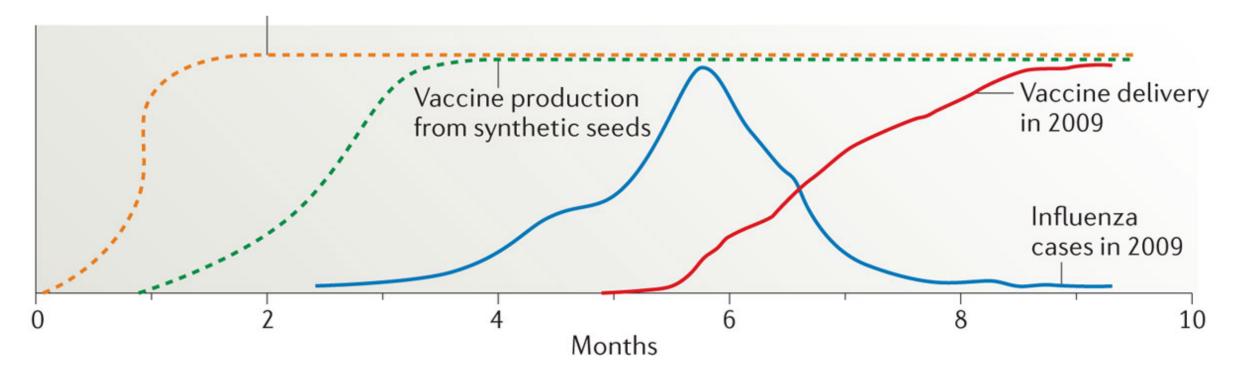
DNA-based vaccines


- Facile and rapid synthesis
 - Sequence obtained, transfected cells with synthetic HA/NA genes in <1 d
- Activation of CD8⁺ and CD4⁺ T cells
- Vaccines licensed for veterinary use
- Entry required to nucleus
- Risk of integration in genome
- Potency issues in humans

RNA-based vaccines

- Facile and rapid synthesis IVT
- Entry to cytosol sufficient
- No risk of genome integration
- Industry focusing more on cancer / therapeutic applications
 - Moderna, Inc.; CureVac AG; Argos Therapeutics; BioNTech; Tiba Biotech; TriLink (manufacturer)
- Active and passive (mAbs) immunization
- Further clinical trials required

CONFIDENTIAL Large scope progress on RNA-based vaccines needed

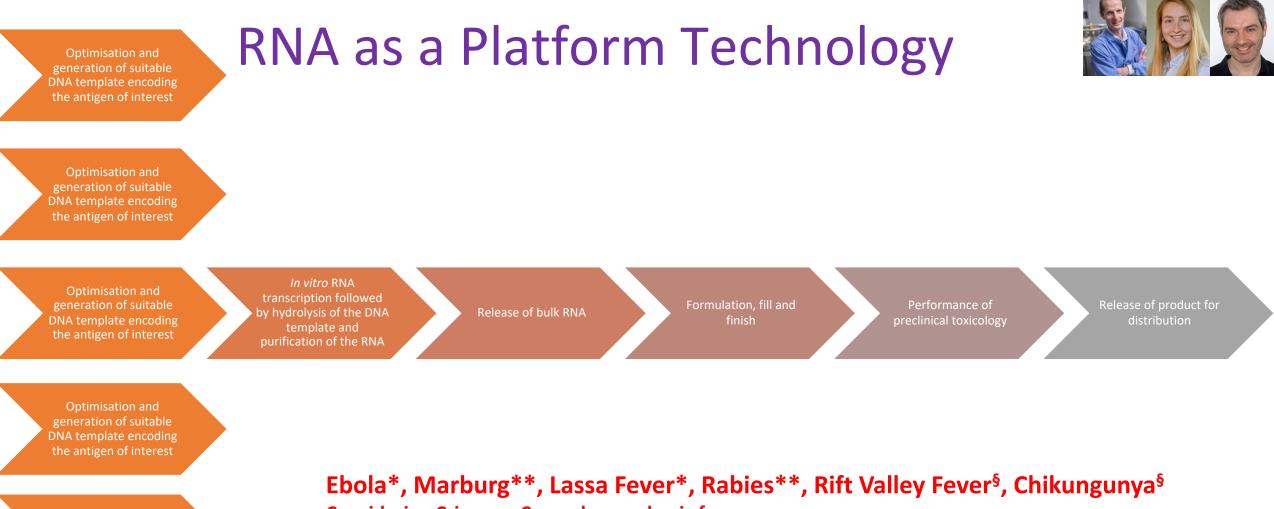


Prof Robin Shattock Director of ICL's FVMR Hub

Synthetic biology may provide for rapid response vaccines and meet the needs of regional manufacture

Production of synthetic RNA vaccine

Nature Reviews | Immunology


Ennio De Gregorio and Rino Rappuoli. *Nature Reviews Immunology.* **2014**. 14, 505-514.

RNA synthesis enables rapid manufacturing

Our objective is to demonstrate the utility and flexibility of an innovative, broadly applicable synthetic saRNA vaccine platform that enables tailored "just in time" vaccine production to improve regional and global preparedness for foreseeable recurrent outbreaks with viral pathogens.

We acknowledge the financial support provided by the Coalition for Epidemic Preparedness Innovations (CEPI) for our work under an award agreement entitled RapidVac.

Optimisation and generation of suitable DNA template encoding

Optimisation and generation of suitable DNA template encoding the antigen of interest

Considering Crimean–Congo hemorrhagic fever

*Clinical development now being driven by Innovate UK **Clinical development now being driven by CEPI §Preclinical/process development – FVMR Hub (UVRI/ICL)

RNA – Professor Robin Shattock

We acknowledge the financial support provided by the Coalition for Epidemic Preparedness Innovations (CEPI) for our work under an award agreement entitled RapidVac.

CEPI

Clinical Trials of RNA Vaccines for Infectious Diseases

Product, Company/Institution	Indication (disease)	Antigen	Formulation	Phase	Status	Results	National Clinical Trial Identifier
RNActive® CureVac	Rabies	Rabies virus glycoprotein [55]	None	1	Active, Not Recruiting	Generally safe, but some significant adverse events (AEs); boostable functional antibodies	NCT02241135
RNActive® CureVac	Rabies	Rabies virus glycoprotein	None	1	Recruiting	New construct versus prior trial	NCT03713086
mRNA-1851 Moderna	Influenza H7N9	Influenza Hemagglutinin H7N9 A/Anhui/1/2013 [94]	Lipid Nano-particles	1	Active, Not Recruiting	Moderna website says 1° and 2° endpoints met, but no published data	NCT03345043
mRNA-1440 Moderna	Influenza H10N8	Influenza Hemagglutinin H10N8 (A/Jiangxi-Donghu/346/2013) [94]	Lipid Nano-particles	1	Active, Not Recruiting	Interim: AEs: Majority mild moderate; A few: severe; Seroconversion rates high	NCT03076385
mRNA-1653 Moderna	Human Metapneumo-virus + Parainfluenza virus 3	Fusion proteins of each virus	Lipid Nano-particle	1	Active, Not Recruiting	Announced via press release safe and immunogenic; no publications found	NCT03392389
mRNA-1388 Moderna/DARPA	Chikungunya	Not Disclosed (ND)	ND	1	Active, Not Recruiting	Primary Completion: March 2019; no results posted at time of publication	NCT03325075
RNA-1325 Moderna/BARDA	Zika	prM and E [95,96]	Lipid Nano-particles	1	Active, Not Recruiting	Primary Completion: February 2019; no results posted at time of publication	NCT03014089
mRNA-1647 and mRNA-1443 Moderna	Cytomegalovirus	mRNA-1647 is gB, pentameric complex, and mRNA-1443 is pp65 [97]	Lipid Nano-particles	1	Recruiting	Primary Completion: February 2020	NCT03382405
mRNA-1777 Moderna/Merck-V171	Respiratory Syncytial Virus	ND	ND	1	ND	Moderna press release says 1° and 2° endpoints met, but no published data	Not listed on clinicaltrials.gov

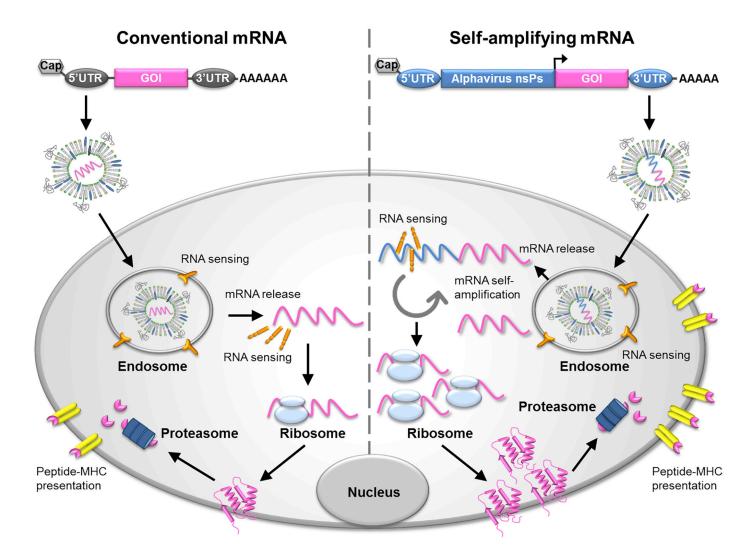
Recent exciting clinical results for RNA vaccines

moderna

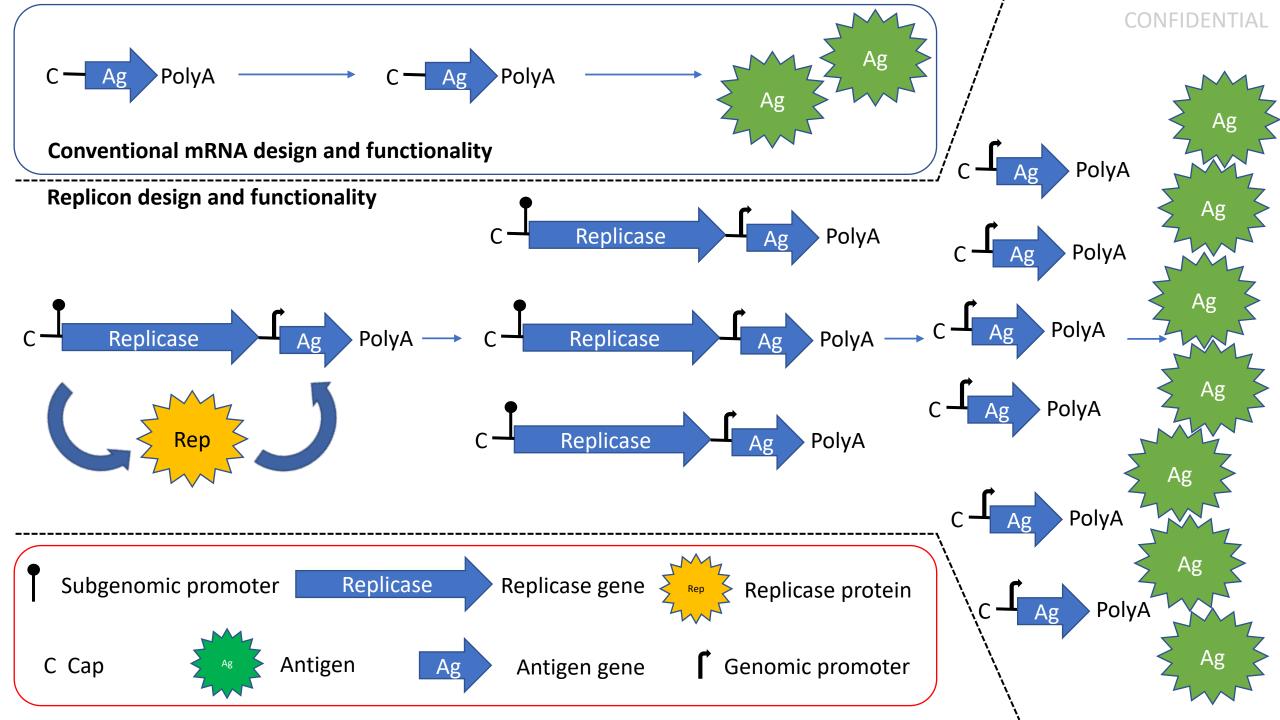
Phase I

Chikungunya virus

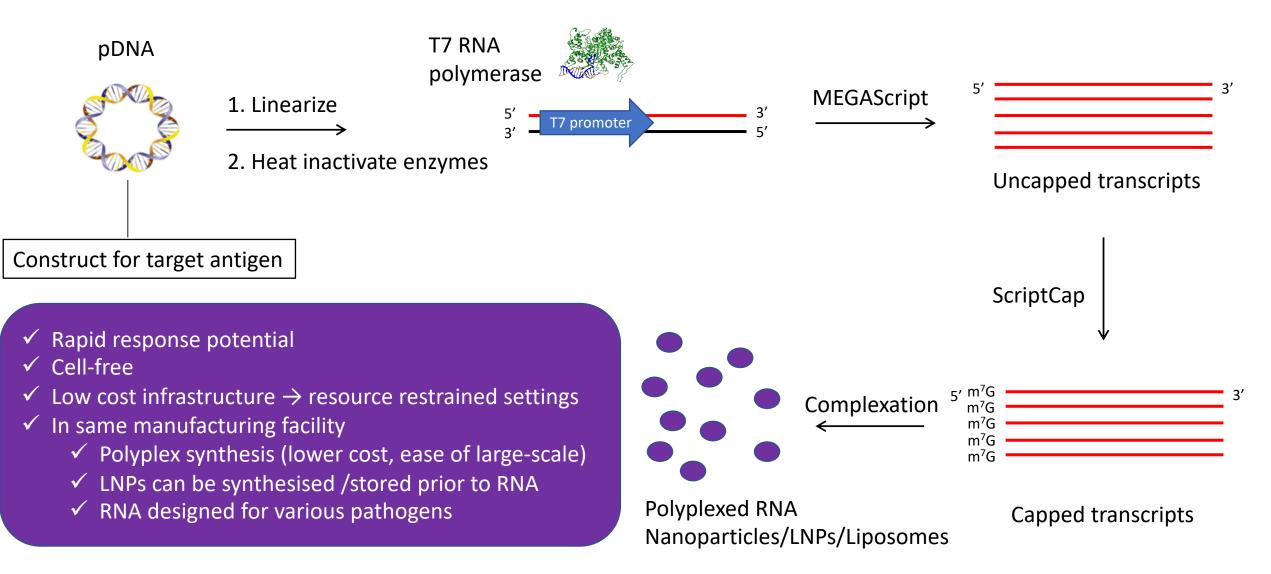
mRNA-1944, which encodes antibodies against for an antibody (CHKV-24) with activity against chikungunya virus, administered via intravenous infusion in healthy adults at escalated doses.


These results mark the first systemic mRNA therapeutic to show production of a secreted protein in humans.

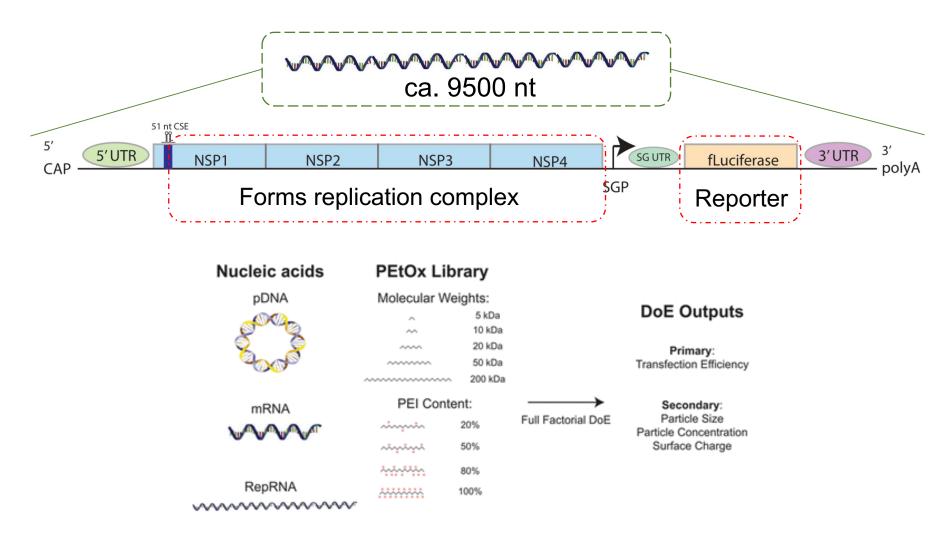
Phase II planning and Phase III preparations


Cytomegalovirus

mRNA-1647 is a vaccine combining six mRNAs in a single vial, which encode for two antigens on the surface of CMV: five mRNAs encoding the subunits that form the membrane-bound pentamer complex and one mRNA encoding the full-length membrane-bound glycoprotein B (gB).


mRNA vs Replicon vaccines

Giulietta Maruggi, Cuiling Zhang, Junwei Li, Jeffrey B. Ulmer and Dong Yu. *Molecular Therapy*. 2019. 27(4): 757-772.

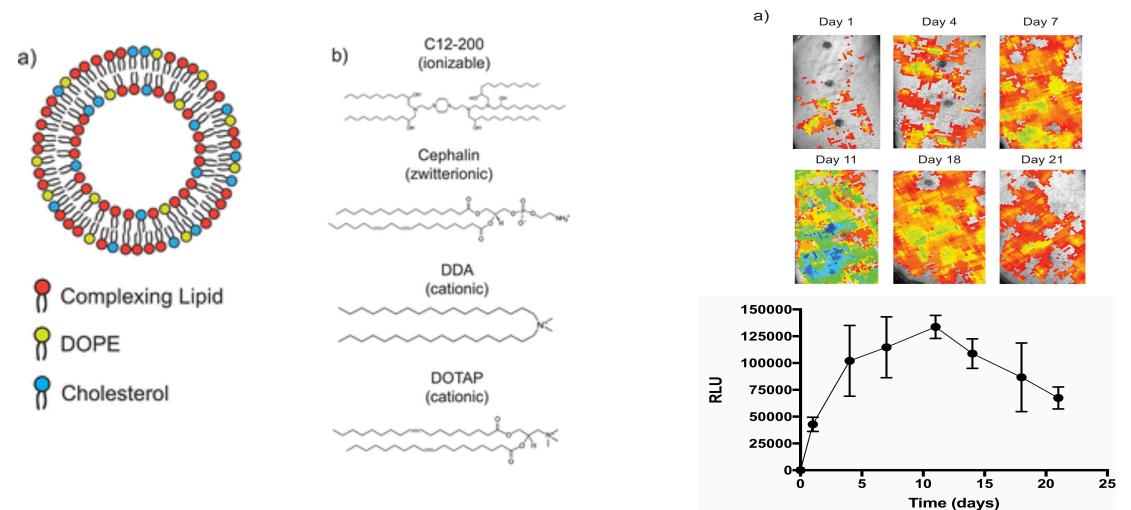


RNA synthesis using IVT

Optimising saRNA delivery

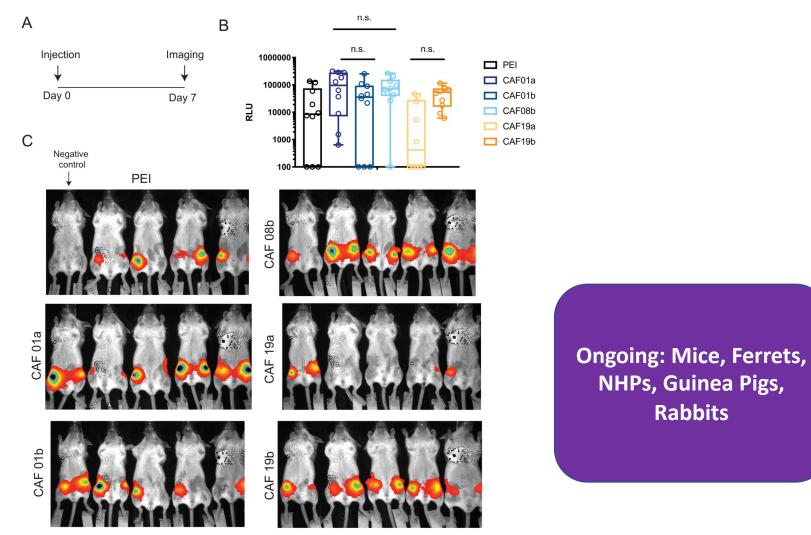
Anna K. Blakney, Gokhan Yilmaz, Paul F. McKay, C. Remzi Becer, and Robin J. Shattock. "<u>One Size Does Not Fit All: The Effect of</u> <u>Chain Length and Charge Density of Poly(ethylene imine) Based Copolymers on Delivery of pDNA, mRNA, and RepRNA</u> <u>Polyplexes</u>." *Biomacromolecules*. 2018. 19(7): 2870-2879. CONFIDENTIAL

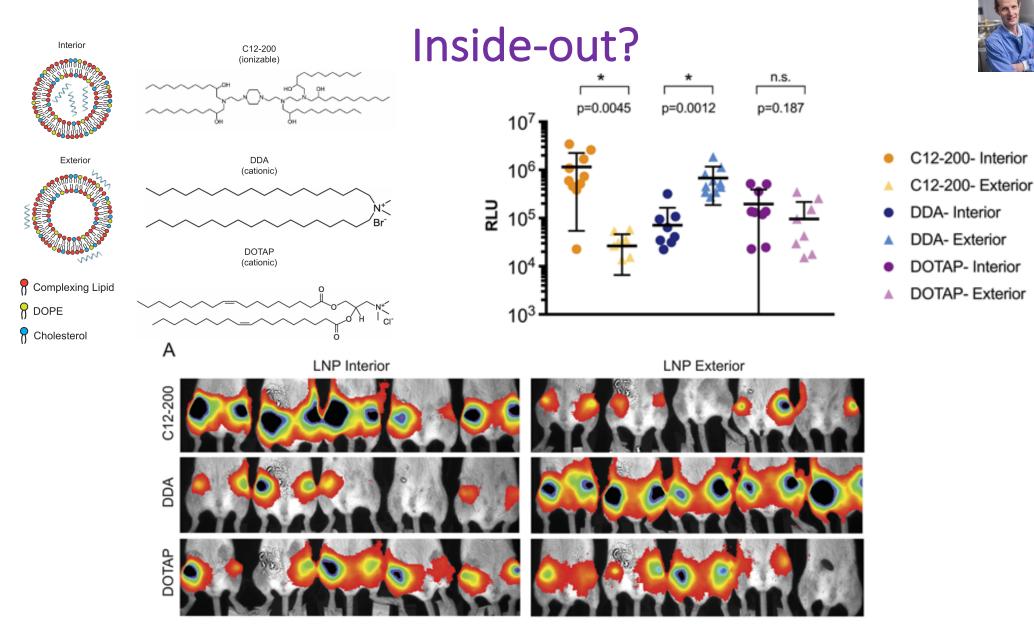
Optimising saRNA delivery



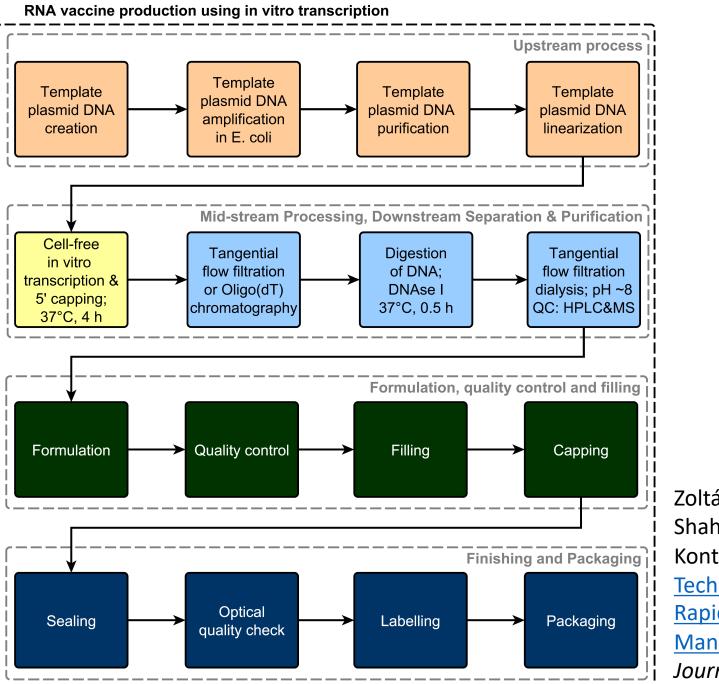
Nucleic acid	optimal % P(EI)	optimal polymer MW		Nucleic Acid	DoE input factor	log worth
DNA	100	83 kDa		DNA	polymer MW	2.960
mRNA	80	45 kDa			% P(EI)	2.393
RepRNA	100	72 kDa			polymer MW* % P(EI)	1.028
				mRNA	polymer MW	4.687
				% P(EI)	1.887	
					polymer MW* % P(El)	1.477
		RepRNA	polymer MW	2.379		
				% P(EI)	1.690	
					polymer MW* % P(El)	0.175

Anna K. Blakney, Gokhan Yilmaz, Paul F. McKay, C. Remzi Becer, and Robin J. Shattock. "<u>One Size Does Not Fit All: The Effect of</u> <u>Chain Length and Charge Density of Poly(ethylene imine) Based Copolymers on Delivery of pDNA, mRNA, and RepRNA</u> <u>Polyplexes</u>." *Biomacromolecules*. 2018. 19(7): 2870-2879. CONFIDENTIAL


Human skin explants


Anna K. Blakney, Paul F. McKay, Bárbara Ibarzo Yus, Judith E. Hunter, Elizabeth A. Dex, and Robin J. Shattock. "<u>The Skin You Are</u> <u>In: Design-of-Experiments Optimization of Lipid Nanoparticle Self-Amplifying RNA Formulations in Human Skin Explants</u>." ACS Nano. 2019. 13(5): 5920-5930.

Optimising formulations for saRNA


Anna K. Blakney, Paul F. McKay, Dennis Christensen, Bárbara Ibarzo Yus, Yoann Aldon, Frank Follman, and Robin J. Shattock. "<u>Effects of cationic adjuvant formulation particle type, fluidity and immunomodulators on delivery and immunogenicity of</u> saRNA." *Journal of Controlled Release*. 2019. 304: 65-74.

Anna K. Blakney, Paul F. McKay, Bárbara Ibarzo Yus, Yoann Aldon, and Robin Shattock. "Inside out: optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA." *Gene Therapy*. 2019. 26: 363-372.

Zoltán Kis, Robin Shattock, Nilay Shah, and Cleo Kontoravdi."<u>Emerging</u> <u>Technologies for Low-Cost,</u> <u>Rapid Vaccine</u> <u>Manufacture</u>." *Biotechnology Journal*. 2019. 14: 1800376.

Critical steps in saRNA production and processing

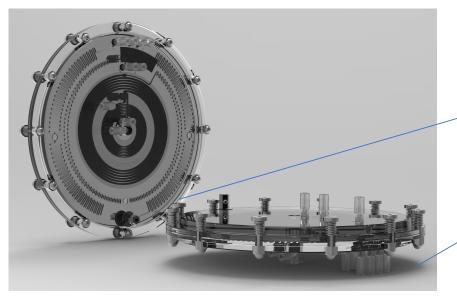
NHS Blood and Transplant

Platform modular GMP process for *in vitro transcription* (IVT) to produce clinical-grade saRNA product

CONFIDENTIAL

G.M. Cheetham and T.A. Steitz. *Science*. 1999. 286: 2305-9.

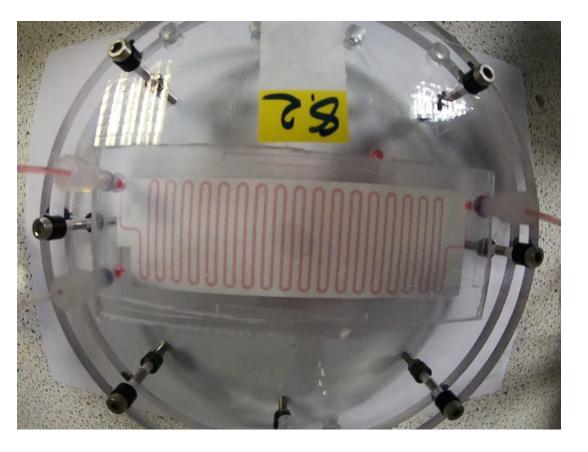
RNA – UVRI, Uganda


Rift Valley Fever is focus for proof of concept in Uganda

UVRI staff training within Prof Robin Shattock's labs in Imperial College London.

Modular manufacture – Factory-in-a-Box

- A modular micro/meso fluidic device to synthesise and cap RNA
- Continuous operation
- On-line and in-situ analytical techniques
- Scale out rather than scale up
- Production of sufficient number of dosages within a few hours of continuous operation
- Potential for significant cost savings and rapid on-demand and in-situ manufacture of synthetic RNA vaccines



Integrated flow Reaction-Filtration module

Connected System – Experimental set up

Flow Filtration Unit

Reaction Unit with in-situ monitoring

1906422.9, Microfluidic Sensing and Control System 2. Makatsoris, C, UK Patent Application No. 1906421.1, Microfluidic Filtration Apparatus 3. Makatsoris, C,UK Patent Application No. 1906413.8, Microfluidic Processing Apparatus and Method

Future Vaccine Manufacturing Hub

Future Vaccine Manufacturing Hub Outputs

Publications

1. Charles Vragniau, Joshua C. Bufton, Frédéric Garzoni, Emilie Stermann, Fruzsina Rabi, Céline Terrat, Mélanie Guidetti, Véronique Josserand, Matt Williams, Christopher J. Woods, Gerardo Viedma, Phil Bates, Bernard Verrier, Laurence Chaperot, Christiane Schaffitzel, Imre Berger, and Pascal Fender. "Synthetic self-assembling ADDomer platform for highly efficient vaccination by genetically encoded multiepitope display." Science Advances. 2019. 5: eaaw2853.

2. Ankur Matreja, Gordon Dougan. "Molecular epidemiology and intercontinental spread of cholera." Vaccine. 2019. https://doi.org/10.1016/j.vaccine.2019.07.038.

3. Anna K. Blakney, Paul F. McKay, Bárbara Ibarzo Yus, Yoann Aldon, and Robin Shattock. "Inside out: optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA." Gene Therapy. 2019. https://doi.org/10.1038/s41434-019-0095-2

4. Zoltán Kis, Maria M. Papthanasiou, Raul Calvo-Serrano, Cleo Kontoravdi, and Nilay Shah. "<u>A model-based quantification of the impact of new manufacturing technologies on developing country</u> vaccine supply chain performance: a Kenyan case study." Journal of Advanced Manufacturing and Processing. 2019. <u>https://doi.org/10.1002/amp2.10025</u>

5. Anna K. Blakney, Paul F. McKay, Dennis Christensen, Bárbara Ibarzo Yus, Yoann Aldon, Frank Follman, Robin J. Shattock. "Effects of cationic adjuvant formulation particle type, fluidity and immunomodulators on delivery and immunogenicity of saRNA." Journal of Controlled Release. 2019. 304: 65-74.

6. Maria M. Papthanasiou, Baris Burnak, Justin Katz, Nilay Shah, Efstratios N. Pistikopoulos. "<u>Assisting continuous biomanufacturing through advanced control in downstream purification</u>." Computers & Chemical Engineering. 2019. 125: 232-248.

7. Anna K. Blakney, Paul F. McKay, Bárbara Ibarzo Yus, Judith E. Hunter, Elizabeth A. Dex, and Robin J. Shattock. "<u>The Skin You Are In: Design-of-Experiments Optimization of Lipid Nanoparticle Self-Amplifying RNA Formulations in Human Skin Explants</u>." ACS Nano. 2019. 13(5): 5920-5930.

Anna K. Blakney was awarded a <u>Provost's Award for excellence in animal research</u> for the above work.

8. Anna K. Blakney, Gokhan Yilmaz, Paul F. McKay, C. Remzi Becer, Robin J. Shattock. "One Size Does Not Fit All: The Effect of Chain Length and Charge Density of Poly(ethylene imine) Based Copolymers on Delivery of pDNA, mRNA, and RepRNA Polyplexes." Biomacromolecules. 2018. 19(7): 2870-2879.

9. Anna K. Blakney, Paul F. McKay, Robin J. Shattock. "<u>Structural Components for Amplification of Positive and Negative Strand VEEV Splitzicons</u>." *Frontiers in Molecular Biosciences*. 2018. 5: 71. 10. Luke Muir, Paul F. McKay, Velislava N. Petrova, Oleksiy V. Klymenko, Sven Kratochvil, Christopher L. Pinder, Paul Kellam, Robin J. Shattock. "<u>Optimisation of ex vivo memory B cell</u> expansion/differentiation for interrogation of rare peripheral memory B cell subset responses." *Wellcome Open Research*. 2018. 2: 97.

11. Zoltán Kis, Robin Shattock, Nilay Shah, Cleo Kontoravdi. "Emerging Technologies for Low-Cost, Rapid Vaccine Manufacture." Biotechnology Journal. 2019. 14: 1800376.

Awards

Anna K. Blakney was awarded a Provost's Award for excellence in animal research.

Alex Brogan was awarded the Postdoc and Fellows Development Centre (PFDC) Reps Award 2018. Yunqing (Frank) Zhu was appointed as Professor at Tongji University in Shanghai. Alex Brogan was appointed Lecturer at King's College London.

<image>

@vaxresearch

Twitter

Thank you for your attention

This research is funded by the Department of Health and Social Care using UK Aid funding and is managed by the Engineering and Physical Sciences Research Council (EPSRC, grant number: EP/R013764/1). The views expressed in this presentation are those of the author(s) and not necessarily those of the Department of Health and Social Care.

Contact: FVMR Hub Operations Manager, Dr Ben Pierce at <u>b.pierce@imperial.ac.uk</u>