Processing of Viral Vaccines: Scale up of centrifugation processes vaccines Alfa Wassermann Bio-purification systems Continuous flow Ultracentrifugation

KII & PKII Continuous Flow Ultracentrifuges

Alfa Wassermann Pharma products, Separations & Diagnostics

Privately owned business

Founded in 1948

HQ in Bologna Italy

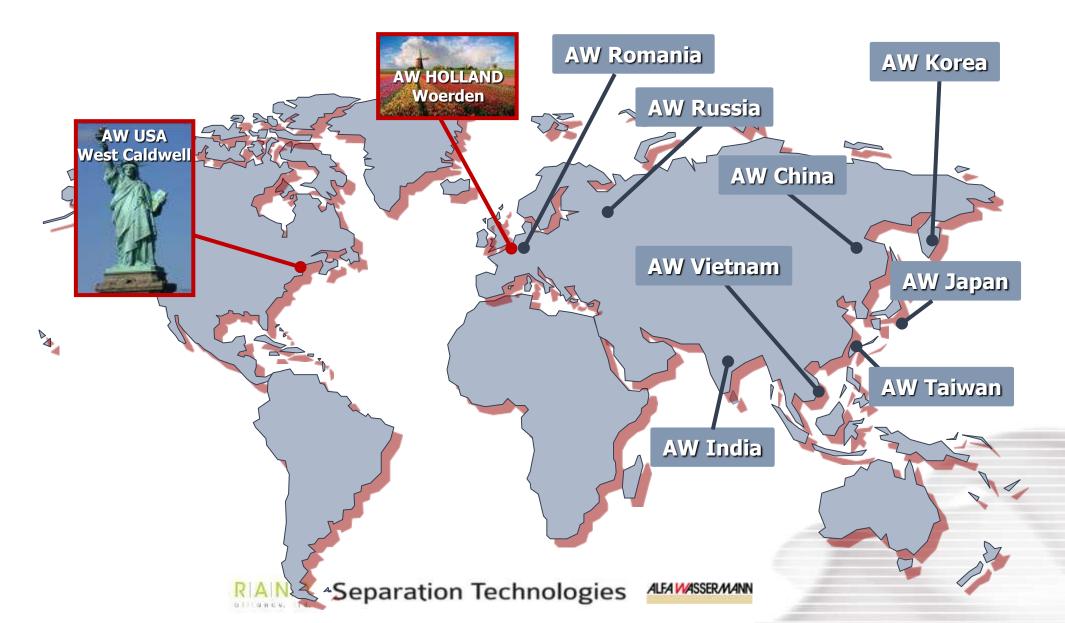
Pharmaceuticals primary business

Represented in over 60 countries

TOTAL # EMPLOYEES > 1500

SEPARATION TECHNOLOGIES Continuous Flow Ultracentrifuges for virus purification in vaccine related virus research, new vaccine development and GMP/FDA processing

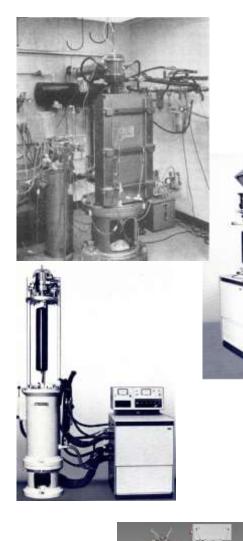
DIAGNOSTIC TECHNOLOGIES

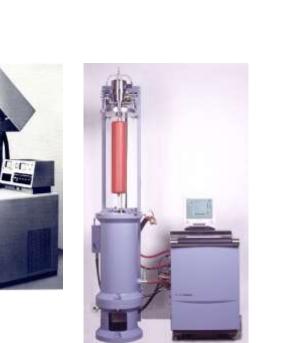

Bio Chemistry Analyzers for patient blood testing

RAND attance. 14.

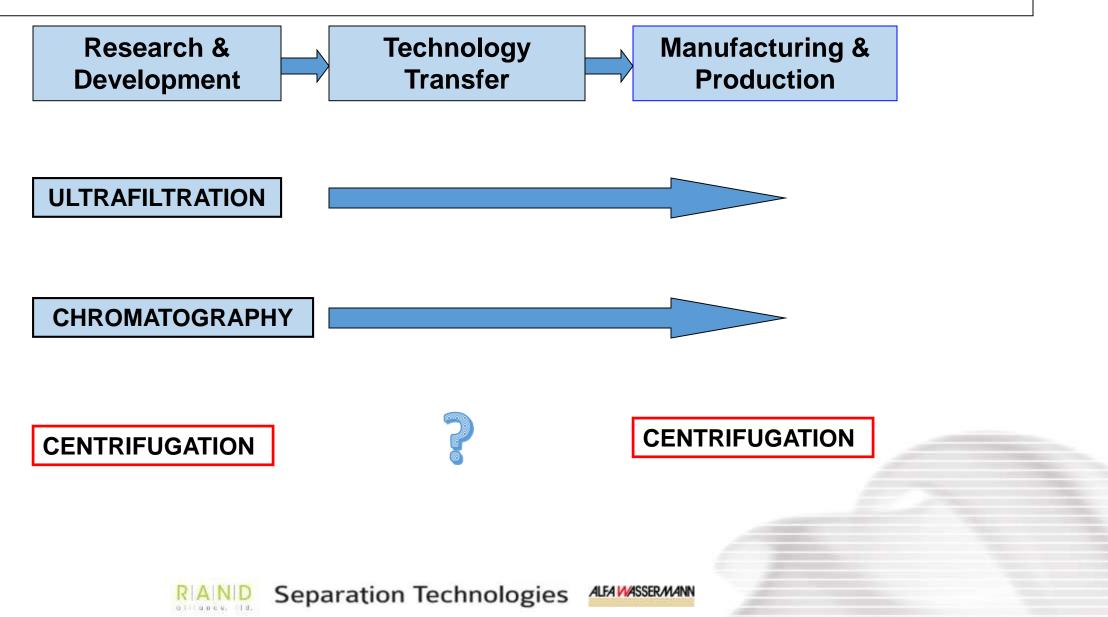
Separation Technologies

Alfa Wassermann Separation Technologies Groups




Continuous Flow Preparative Ultracentrifuges

Standard Fluid Handling System with Standard Instrumentation Package



KII Ultracentrifuge History

- **1969** : K Ultracentrifuge commercially produced (by ENI, New Jersey)
- **1970** : 1st Influenza vaccine marketed that was purified using K Ultracentrifuge
- **1975** : Introduction RK and KII Ultracentrifuge, operated by analogue console
- **1995** : RK and KII compliant with CE and CSA
- **1998** : Introduction of Computer Control and GAMP compliant software
- 2002 : PK and KII Ultracentrifuges enhanced with clean room and BL2+ features for cGMP vaccine manufacturing
- **2006** : Electric Drive Promatix, ePK and eKII.
- 2017 : Automated Fluid Handling System

Separation Technologies 4

Bioprocess method pipelines

Bioprocess Downstream Processing

Upstream Process

Vector Construction Strain Selection Media optimisation Fermentation Harvest & Clarification

Harvest Cell Removal Clarification Primary Extraction

Cells / Supernatant Cell lysis Cell debris removal DNA clearance Ammonium Sulphate extraction Solvent extraction Remove insolubles Isolate product Purify product Polish product Sterile Filtration

Downstream Process

Centrifugation Ultrafiltration/Diafiltration Chromatography Fill and Finish

Formulation Filling Final Release

Buffer Exchange Blending Adjuvant Addition Filling to Containers

Separation Technologies

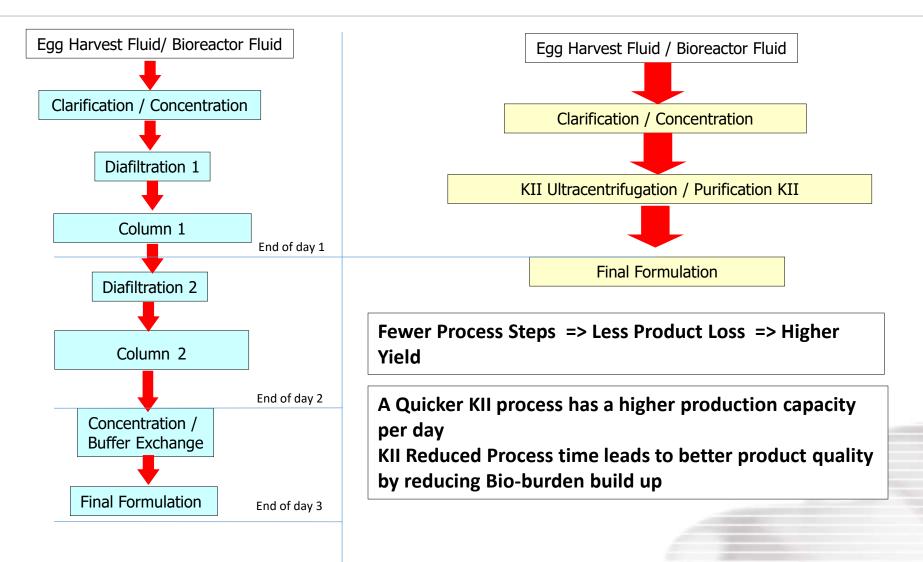
Key process scale considerations

Production	Process Technology		
Volume	Filtration	Chromatography	Ultracentrifugation
			Scaleable
1 L	50 cm ² TFF	50 mL	PX-230 mL
5 L	$0.1 \text{ m}^2 \text{ TFF}$	250 mL	PKII-400 mL
10 L	$0.5 \text{ m}^2 \text{ TFF}$	500 mL	PKII-800 mL
100 L	$3.0 \text{ m}^2 \text{ TFF}$	1000 mL	KII-3200 mL
	RIAND Separatio	n Technologies 4	A MASSERMANN
	fathlance, old.	0	

The implication of multiple step processing

	1	2	3	4	5
Step Yield					
90	90	81	73	66	60
80	80	64	51	41	33
70	70	49	34	24	17
60	60	36	22	13	8

Number of Steps


The best scenario only one step with 100% recovery.

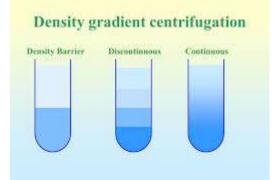
With each step and with normal efficiencies a 10% loss will incur as a minimum.

It can be seen that a minimum of purification steps is preferable for purification.

Chromatography compared to Ultracentrifugation – KII Process Efficiency


Centrifugation Principle

The primary information of use in centrifugation is sedimentation coefficient (S20,w) of the protein.


When subjected to the force of gravity the particles will move at a rate which can be calculated from the sedimentation coefficient.

The larger the size and the larger the density of the particles, the faster they separate from the mixture, decreasing the time required for separation.


Rate Separation

Types of Density Gradient

Isopycnic Banding

Separation Technologies ALFA MASSERMAN

Centrifuges and Ultracentrifuges

Many models of centrifuge exist from a range of equipment manufacturers.

Ultracentrifuge is generally:

Separation of small particles or large molecules

High speed / centrifugal force

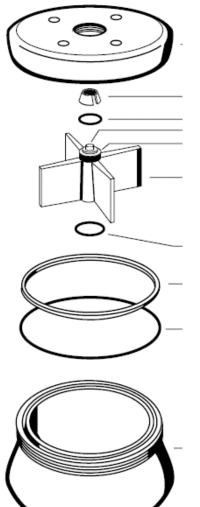
Usually runs in a vacuum

Centrifuge is generally

For separating sediments, removing moisture

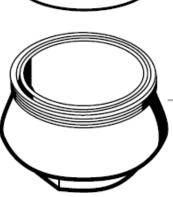
Lower speed / centrifugal force

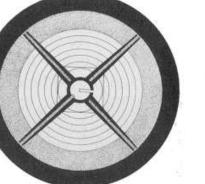
Not typically running in a vacuum chamber

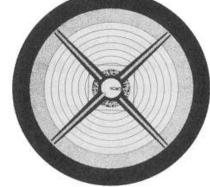

Batch Rotors

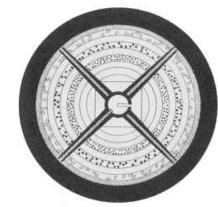
These rotors are limited by their capacity to be useful in vaccine manufacture. Too many runs would be needed to make a batch of vaccine.

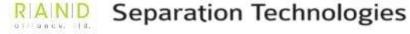
Principle: Fill tube – spin tube – collect from tube

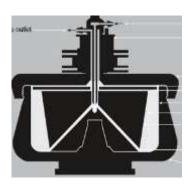

Zonal Rotors




These rotors do not have tubes but sectors/zones;


The fluid fills the entire rotor.


A plastic core is used as an insert inside the rotor to create chambers. The vanes/fins of the core keep the fluid from mixing during rotation. The volume is much greater than a tube rotor (approx. 200ml vs 1600ml) Principle: Fill rotor – spin rotor – empty rotor



Continuous flow rotors

These rotors are not limited by their size as fluid continuously enters and leaves the rotor during high speed operation.

Two types: Disc and Tubular

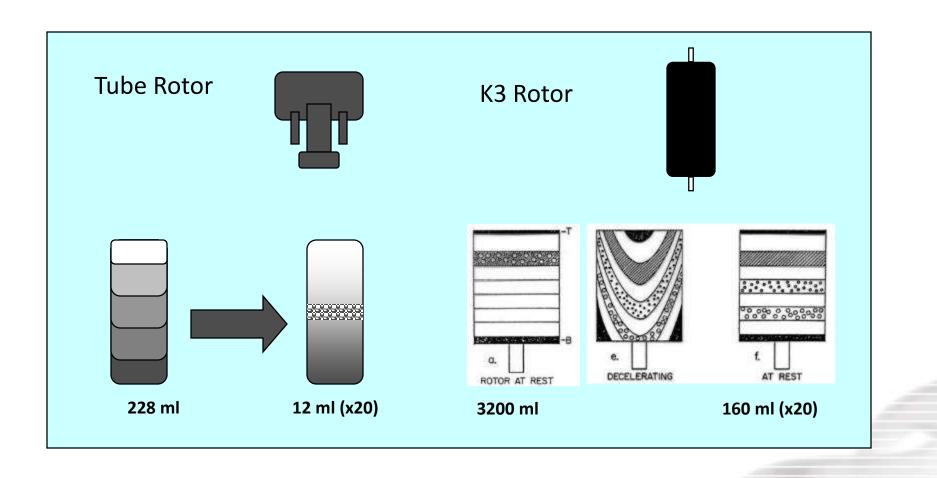
Principle: Load Gradient – Spin Rotor – Flow Product – Brake Rotor – Collect Gradient

Parameter	CF32	КЗ
Shape	Disc type	Tubular
Speed max.	32000 rpm	40500rpm
Centrifugal force	102 000xg	121200xg
Capacity	430ml	3200ml
K factor	42	29.7
Flow Path	Loop	Dual inlet
Scaleable	No	Yes
Automated	Manual process	Automated

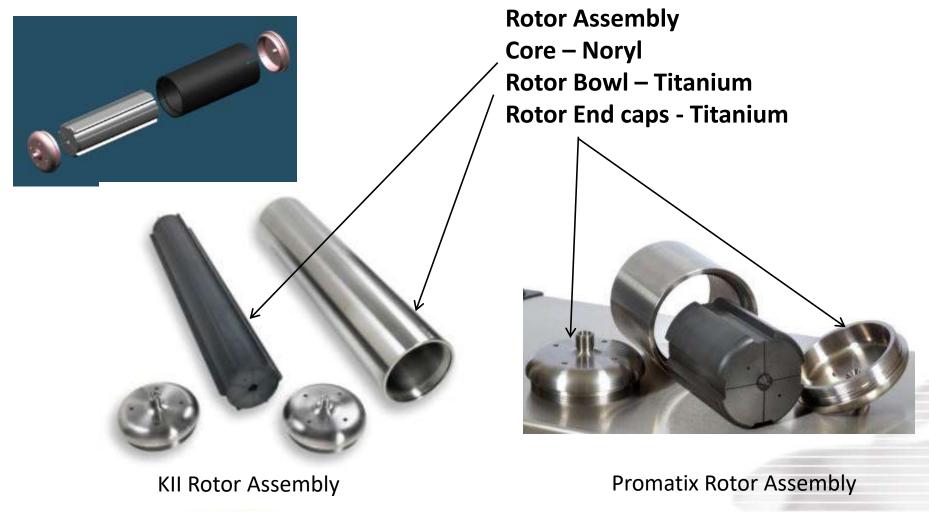
Separation Technologies ALEA MASSER MAN

System Capacities

	Lab Scale Promatix 1000 [™]	Development Scale PKII	Production Scale KII
Typical Feed Flow (vaccine)	0.25 – 2 L/h	up to 15 L/h	up to 30 L/h
Rotor Capacity	PX3 – 120 mL	PK3 – 400 mL	K3/K6 – 3200 mL
(separation volume)	PX3 – 230 mL	PK3 – 800 mL	K10 – up to 8 Liters
		PK3/PK6 – 1600 mL	K5 — 8.4 Liters
Batch Volume (5h feed)	Up to 5 L	Up to 75 L	Up to 150 L
Max. Rotation Speed	35,000 rpm	40,500 rpm	40,500 rpm
Gravitational Forces	Up to 90,500xg	Up to 121,200xg	Up to 121,200xg
Scale Factor	27x scale down	8x scale down	1x scale
	14x scale down	4x scale down	
		2x scale down	

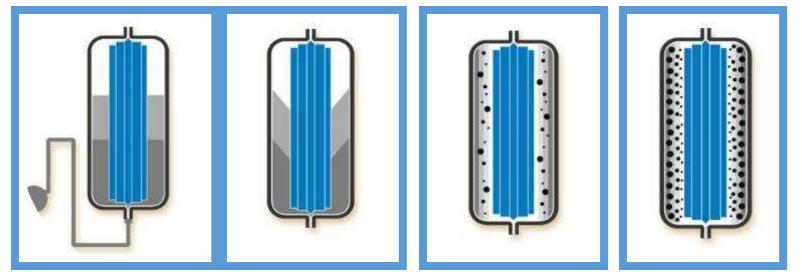


How to scale up?


Small to Large Scale Gradients 从小量到大规模梯度

Separation Technologies 454

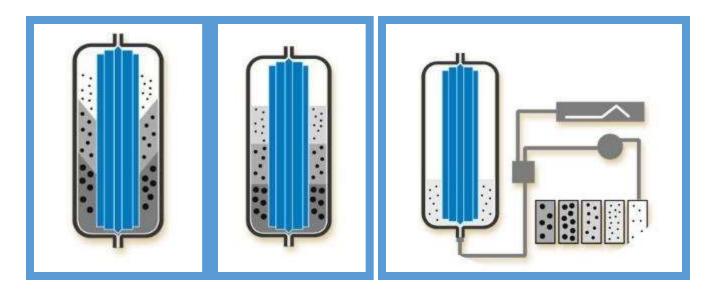
Scaleable centrifugation through rotor technology



Separation Technologies

AW KII Separation Technique – Reorienting Gradient 阿尔法韦士曼分离技术---重换方向的梯度

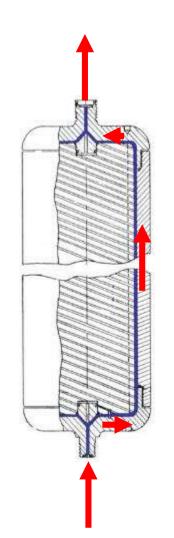
- **1.** Load the Gradient in the stationary rotor.在静止的转子中加入梯度。
- 2. Kll accelerates slowly and the gradient becomes vertical. Kll缓慢加速,梯度变为垂直方向。



3. At 35 000 rpm flow allantoic fluid into the rotor to capture the virus in the Gradient. All allantoic fluid waste flows out of the rotor.速度达35000转/分时尿囊液 加入转子中,在梯度中捕获病毒。所有的尿囊液废液流出转子。

4. At 35 000 rpm flow PBS into the rotor to allow time for the virus to concentrate in a narrow zone.在35000转时向转子中流入缓冲液,为病毒在窄区带浓缩流出时间。

AW KII Separation Technique – Reorienting Gradient 阿尔法韦士曼分离技术---重换方向的梯度


Set on the brake and the vertical gradient becomes horizontal again.制动设备,随后垂直方向的梯度又回到水平方向。
 The layers of virus remain separate in the density gradient.病毒仍然分别呆在不同的密度梯度层中。

7. Collect the gradient using a pump from the bottom of the rotor. Select virus fractions using UV monitor. 用泵从转子底部抽出不同的梯度。用紫外检测仪选择病毒部分。

ND Separation Technologies

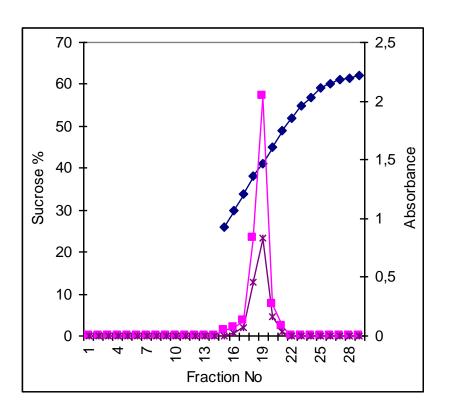
Particle separation during continuous flow operation


Waste:

Allantoic Fluid without Virus Particles

Influenza Viral particles remain in the stationary gradient phase (purification and concentration)

Ovalbumin waste leaves the rotor in the mobile phase


Product Feed: Clarified Allantoic Fluid

Separation Technologies

Typical separation profile

Speed:	40 500 rpm				
RCF:	121 200 xg				
Flow:	29 L/h				
Gradient:	0-60% Sucrose				
Product Banding:	41% Sucrose				
Rotor:	КЗ				
Volume:	50 - 150 L				
Product:	600-800ml				
Product clean-out: 95%					
Product Recovery	: 70%				

Near Isopycnic banding process - volume reduction and product purification in one step

Separation Technologies ALEA MASSER MANN

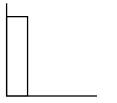
Critical Scale up parameters of centrifugation

Particle Range

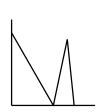
ALFA MASSERMANN

2002

		Particle Range	7005
Rmax = 60% sucrose Rmin = 0% sucrose	 Maximum radius – must not change Minimum radius – must not change Gradient load density – must not change Gradient load volumes – increase 	Flow / Batch Rotor Type	7005 Continuous Flow K3 3200 PK3-1600 PK3-800 PK3-400 PK3-230
Stationary Gradient Phase	volumetrically on scale up Product flow rate – increase volumetrically on scale up	Flow Rate	PX3-120 28 L/h 14 L/h 7 L/h 3.6 L/h 2.0 L/h 1.0 L/h


Separation Technologies

A NL

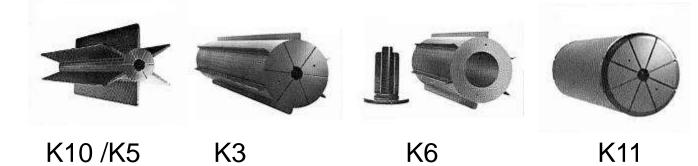

Banding of the particles

<u>Rate Zonal Centrifugation</u>: Size dependent differentiation of the particles which move in the gradient at different rates but will ultimately band at the same density.

Isopycnic Centrifugation: Density dependent differentiation of the particles which may move at similar rates but will band in the iso-dense layer.

1. <u>Pelleting</u>: Removal of the target protein from the process stream to the rotor wall. Pelleting is a method only useful for extremely robust proteins and particles

2. <u>Sedimenting</u>: Separates the target protein onto a dense layer 'cushion' where it remains in suspension. This method keeps the protein of interest in a suspension.



3. <u>Banding</u>: Resolving the target protein in a gradient allowing separation of impurities at higher and lower densities.

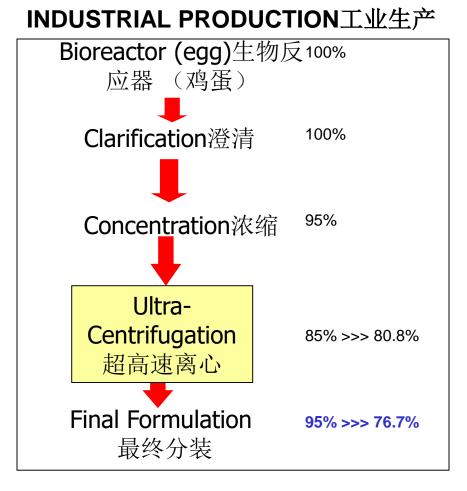
AND Separation Technologies ALEAN

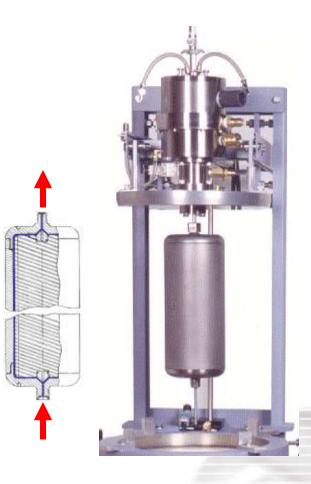
Separation capabilities

Particle Range	< 50S	50-200S	500S	700S
Flow / Batch	Batch	Continuous Flow	Continuous flow	Continuous Flow
Rotor Type	K5 K10	K3 K11	K3	K3
Flow Rate	None	8 L/hr 10 L/hr	11 L/hr	29 L/hr
Time To sediment	3.5 Hr 2hr 50 min	9 min 50s	3.5 min	2.5 min

RAND Separation Technologies

Alfa Wassermann Separation Technologies – Process Range 阿尔法韦士曼分离技术---工艺范围


Alfa Wassermann Ultracentrifuge is used globally for manufacture of: 阿尔法韦士曼超高速离心机在全球用于制造:

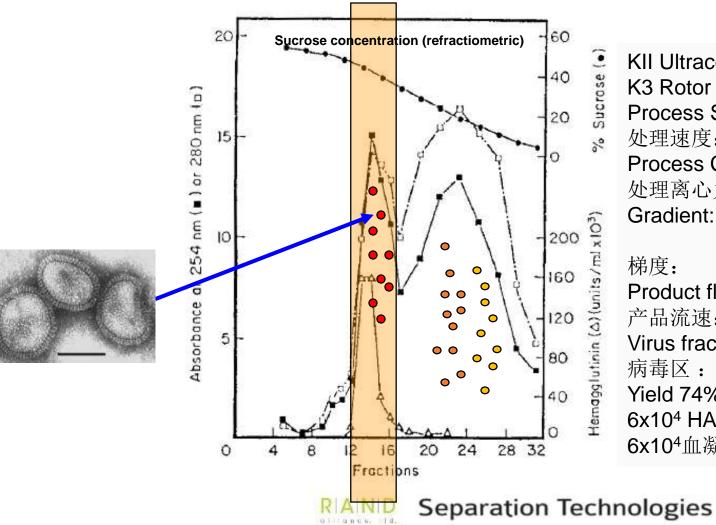

Influenza vaccine 流感疫苗 Rabies vaccine狂犬疫苗 Hepatitis B Vaccine乙肝疫苗 Meningitis Vaccine 脑膜炎疫苗 Japanese Encephalitis Vaccine 乙型脑炎疫苗

Separation Technologies ALEA MASSER MAN

AWST Continuous Flow Ultracentrifuge – Standard Process Steps 阿尔法韦士曼连续流超高速离心机---标准工艺步骤

Separation Technologies

An Example - Influenza Virus Purification



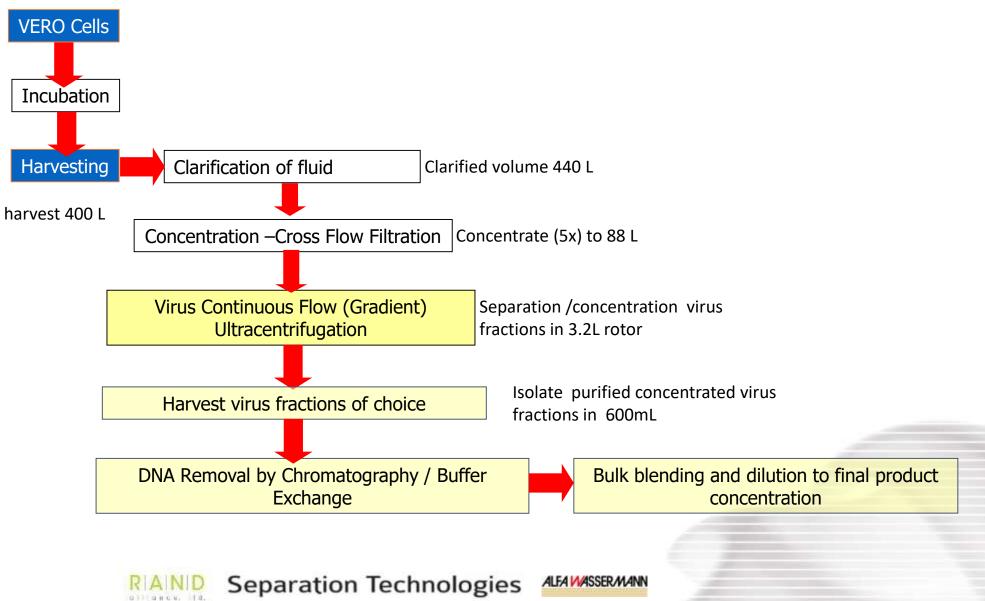
Separation Technologies ALEA MASSERMANN

Typical process flow for allantoic influenza manufacturing

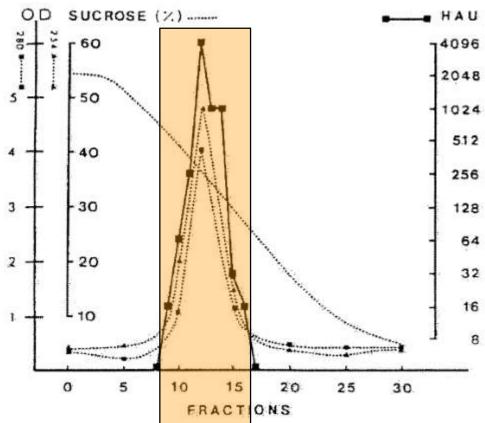
Influenza Virus Gradient Purification Results 流感病毒梯度纯化结果

KII Ultracentrifuge KII超高速离心机 K3 Rotor – 3.2L K3转子----3.2升 Process Speed: 35 000 rpm 处理速度: 35000转/分 Process Centrifugal Force: 121 000 xg 处理离心力: 121 000 xg Gradient: 1.6L PBS 1.6L 60% Sucrose 1.6升缓冲液 15 L/h Product flow rate: 产品流速: 15 L/h Virus fractions: 12 - 1712 – 17 病毒区: Yield 74% in the peak 峰值收率74% 6x10⁴ HA units/mg protein 6x10⁴血凝素/毫克

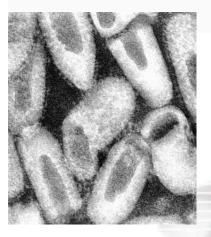
Process Summary (Monovalent)


Process	Timing	Remark	Duration	# Units	Volume start	Volume finish
Harvesting	Day 1	12°C	2 – 2.5 h	1	50.000 eggs	500 L
Clarification	Day 1	12°C; log3 reduction bioburden	2 h; 250 L/h	1	500 L	500 L
Concentration	Day 1	12^oC; no aggregation; use Thimerosal, VitE, Tween 80, DOC)	2 h	1	500 L	100 L
Inactivation	Day 2	21°C; formaldehyde, BPL, Triton X	overnight	1	100 L	100 L
KII Capture/Conc. whole virus	Day 2	12°C; log 6-7 reduction bioburden	6 h	1	100 L	1.6 L
Diafiltrate/dilute	Day 3	Remove sucrose			1.6 L	30 L
Blending/mixing	Day 3					
Final filling	0	1).u.n.c.w, 1.1.d.,				

Rabies Purification



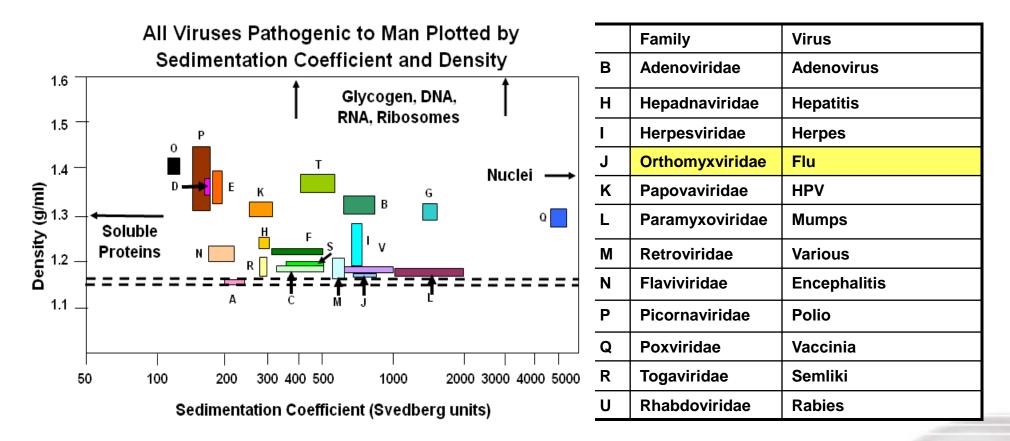
Separation Technologies ALEA MASSER MANN


Typical process flow for rabies vaccine manufacturing

Rabies Vaccine

KII Ultracentrifuge KII RK3 Rotor – 1.6L Process Speed: 35 000 rpm Process Centrifugal Force: 90000 Xg Gradient: 0-55% w.w Sucrose Product flow rate: 7 L/h Virus fractions: 30-35% sucrose Yield up to 90% in the gradient

Atanasiu



Separation Technologies

In summary what can be purified with a centrifuge to make vaccines

Established Protocols for Virus Families

AWST continuous flow ultracentrifuges is used to purify virus particles from all virus families in the diagram for manufacutre of viral vaccines.

US Patent 6,051,189 System and Method for detection, identification and monitoring of submicron-sized partices CM Wick, DM Anderson Apr 18 2000

