Development of a cost effective and scalable purification process for Vi polysaccharide.

Sudeep Kothari, PhD Former Senior Research Scientist September 26, 2017

International Vaccine Institute

Every child should have the opportunity to receive high quality, safe and efficacious vaccines to protect them from life threatening infectious diseases

Limited funding

Funding for vaccination is limited so in order to get the broadest coverage in resource poor countries vaccines must be affordable

How does VPD address affordability?

Process development:

High yielding antigen production

High recovery purification process using cost effective technology

Scalable process compatible with cGMP production

Technology Transfer:

High standards for quality, strict adherence to cGMP Manufacturer(s) committed to low cost production and low profit margins

Developing Country Vaccine Manufacturers

Manufacturer with capacity to WHO prequalify

Process development

Development of a Typhoid Conjugate Vaccine at IVI

Production and purification of Vi Polysaccharide

Vi polysaccharide

Vi production optimization

3 factors are important in Vi production

- High density bacterial culture
 - Fed batch culture increased OD₆₀₀ four fold
- Optimal environment for expressing genes coding for Vi
 - High osmolality inhibited Vi gene expression
- Optimal chemical environment for biosynthesis and polymerization of the Vi
 - High concentrations of glucose and high pH inhibited Vi biosynthesis

A novel method for purification of Vi capsular polysaccharide produced by Salmonella enterica subspecies enterica serovar Typhi CrossMark

Sudeep Kothari^{a, c}, Neha Kothari^a, Jeong-Ah Kim^a, Eugene Lee^a, Yeon Kyung Yoon^a, So Jung An^a, Christopher Jones^b, Woo Seok Choe^c, Rodney Carbis^{a,*}

^a Vaccine Development Section, International Vaccine Institute, SNU Research Park, San 4-8, Nakseongdae-dong, Gwanak-gu 151-919, Seoul, Republic of Korea

Korcu ^b National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK ^c School of Chemical Engineering, Sungkyungkwan University, Suwon 440-746, Republic of Korea

Purification optimization

Downstream processing (purification of Vi)

Removal of impurities

Maximize recovery of Vi polysaccharide

Clarification

Cells Crude Vi

Cetavlon precipitated Vi

Ethanol precipitated Vi

Vi dissolved in water

Crude Vi concentrate

Purified bulk Vi

Fermentation Inactivation

Clarification of Vi using TFF

Concentration Diafiltration

Cetavlon precipitation

Dissolve in 60% ethanol

Precipitate and wash with 75% ethanol

Dissolve in water

(NH₄)₂SO₄ Precipitate impurities

Concentration / Diafiltration

Sterile filtration

Consistency lots of Vi

Batch number	Protein %	Nucleic acid %	O-acetyl content >mmol/g	Vi ELISA mg/ml	Endotoxin EU/µg
WHO Specification	<1	<2	2.0	NA	25
Consistency Run 1	0.4	0.3	2.3	2.6	2
Consistency Run 2	0	0.29	2.1 2.4		3
Consistency Run 3	0	0.68	2.6	1.9	4

WHO Size specifications : At least 50% of the Vi shall elute before a K_D of 0.25 (Sepharose CL4B)

All three batches comply with WHO specifications

Purification (magnitude of challenge)

In 100 litre fermentation broth

End of fermentation (upstream)

Nucleic acid:	240 g
Protein:	880 g
Endotoxin:	100 g LPS
Vi polysaccharide:	70 g

End of purification (downstream)

Nucleic acid:	0.2 g		
Protein:	undetectable		
Endotoxin:	0.008 g LPS (<100 E.U./dose)		
Vi polysaccharide:	30 g (1 million doses)		

Motivation for alternative downstream process development

- Improve Vi recovery
- Removal of detergent and ethanol based precipitation steps
- Minimizing number of purification steps
- Reducing production timeline and cost
- Ease of scalability

Alternative Purification optimization

Clarification

- Could not achieve clarification using depth filtration with a series of membranes at equivalent bacterial load
- Continued using 0.45µm TFF filtration

Comparison of different 88 cm² pellicon[®] 3 UFDF

Cassettes

- UFDF studies with 100kD Ultracel reduced 96% of the protein and 98% of Nucleic acid contamination from the pool of 0.45µm clarified pooled samples.
- 100kD ultracel UFDF conditions are optimized with 2stage DF with 1M NaCl and Citrate phosphate buffer 6DV's each
- The Vi recoveries are close to 100%

Ammonium sulphate precipitation and concentration and diafiltration at 100kD

- With 10% Ammonium sulphate there is an additional 2% reduction in protein impurities and additional 0.5% reduction in Nucleic acid impurities
- Per Vi recovery at 100kD Ultracel without ammonium sulphate precipitation has only 0.01-0.02% higher impurities

Evaluation of different filter membranes prechromatography

Activated carbon pod or $0.45 \mu m$ Durapore can be used for filtration pre loading in Chromatography column.

Isoelectric point of Vi polysaccharide

- Vi polysaccharide (N-acetyl-a-D-galactosaminouronic acid)
- 2,000 to 10,000 repeating units
- The theoretical pl of the Vi polysaccharide was determined to be around 4-4.2

Binding capacities of Vi per ml of DEAE resin at different pH conditions

- AEX is evaluated with Weak AE (DEAE) and Strong AE resin (TMAE).
- The binding capacities of Vi is higher in Citrate phosphate buffer in comparison to MES and PBS buffer under similar pH conditions. Most optimal pH conditions are pH 6.2

Elution of Vi from DEAE column

- Vi elution is in a range above 0.25M salt concentration up to 0.55M Salt
- Binding of Vi in Citrate phosphate buffer per ml of DEAE resin is 5.6mg
- Vi yield in elution pool is 78%

Evaluation of different filter membranes postchromatography

- Different Hydrophobic, charged, and uncharged filtration membranes were tested for the removal of endotoxin
- Activated carbon pod is able to remove 70-75% of the remaining endotoxin in the pool at 4M salt concentration but at the same time it is also binding ≈80% of Vi polysaccharide

WHO specification for Vi polysaccharide

Process type	Protein %	Nucleic acid %	O-acetyl content >mmole/g	Endotoxin EU/µg
WHO Specification	<1	<2	2.0	25
Vi purification (IVI)	0.4	0.3	2.3	2
DEAE 0.55 pool	15.7	2.3	2	8535.9

- % recovery of Vi has improved with the new process from 40-50% to 77.5%
- Alternate process still have high protein and endotoxin impurities

Conclusion and advantages of new process

- New Vi purification process is developed without use of any detergents, ethanol precipitation and enzymatic hydrolysis.
- The process is close to the criteria where regulatory authorities foresee the future of Polysaccharide vaccine purification.
- Further work needs to be done to reduce the impurity levels within the WHO specifications for Vi polysaccharide.
- % recovery of Vi polysaccharide is 30-40% higher with new process.
- Future work will focus on additional reduction of impurities specifically endotoxin.

Acknowledgement

International Vaccine Institute:

Wook Jin Park, Yeon-Kyung Yoon Dr. Neha Kothari Dr. Viliam Pavliak Dr. Jerome Kim

Merck-Millipore :

Elizabeth Goodrich Charles Park Elina Gousseinov Daniel Koo Mi-Ri Jung Dr. Priyabrata Patnaik Dr. Alex Xenopoulos Dr. Damon Asher Dr. Miles Shi

Thank you

Vaccines don't save lives ,vaccination does

