Vaccines: inspiring Innovation DCVMN 18th AGM 25th - 28th September 2017

Developing a novel Group B Streptococcus (GBS) Vaccine

Patrick Tippoo

- **1.** Overview of Biovac
- 2. GBS Project Overview
- 3. African Significance

Biovac Overview

- A Centre of Excellence rooted in Africa for the development and manufacture of cost-effective vaccines
- Establish end-to-end vaccine development and manufacturing capability for local and export markets

Product Development

Manufacturing

...through product development partnerships and technology transfer partnerships

Vaccine Manufacturing Infrastructure

Vaccine Manufacturing Infrastructure

People: Skills Development

Focused investment in developing local skills

Technology Transfer Partnerships

Established two key manufacturing technology transfer partnerships

- Hexavalent vaccine
- Fill/Finish

- Pneumococcal conjugate vaccine
- Formulation/Fill/Finish

Product Development

Step-wise capacity building...

...focused on conjugate vaccine platform technologies

Backward Integration

Developing a novel

GBS Vaccine

GBS Disease

Group B streptococcus (GBS):

- ... a leading cause of **sepsis** and **meningitis** in neonates and young infants.
- ... can cause stillbirths
- Maternal colonisation in pregnancy has been found in a proportion of women (10–40 %) in all geographical settings evaluated.

Group B Streptococcus Vaccine Development Technology ROADMAP 2017 WHO/IVB/17.10

WHO Preferred Product Characteristics for Group B Streptococcus Vaccines 2017 WHO/IVB/17.09

GBS Disease

 Reported incidence of neonatal and infant invasive GBS disease varies geographically.

- ... The vast majority of the disease burden lies in **low-and-middle-income countries**.
- ... Estimates as high as <u>3 cases per 1000 live</u> <u>births</u> in some areas (excluding stillbirths).
- ... <u>Case fatality is high</u> (10 % and 50 %) particularly in <u>resource poor settings</u>.

Chances of a baby dying in Africa from GBS is 4-5 times higher than in America or Europe

Intra-partum antibiotic prophylaxis

- In high income countries, risk- or screening-guided intra-partum antibiotic prophylaxis (IAP) reduces the incidence of early onset GBS disease.
 - ... This prevention strategy is **not available or practical** in most resource-limited countries.
 - ... Not all women at risk are reached, and a significant disease burden remains.
 - ... IAP also raises concerns about emerging antimicrobial resistance.

- Currently, no vaccine exists for prevention of GBS disease, but evidence suggests
 - ... **maternal immunisation** with protein-conjugated GBS capsular polysaccharides
 - ... may **reduce the disease risk** in neonates and young infants in a serotype-specific manner
 - Ten GBS envelope polysaccharide-based serotypes have been described,
 - ... **five** of which (Ia, Ib, II, III, V) are estimated to account for the **vast majority of the disease burden**

Collaborative partnerships

- Biovac and PATH with technical assistance provided by Inventprise and other partners
 - Funding provided by the Bill & Melinda Gates Foundation

Project Goals

- Develop a low-cost polyvalent GBS conjugate vaccine that will significantly reduce neonatal mortality caused by GBS in sub-Saharan Africa and potentially other low-income regions of the world.
- Capacity building for African vaccine development and manufacturing

Develop a pentavalent GBS vaccine

- Obtain licensure in SA
- Obtain WHO PQ

- Build vaccine manufacturing capacity in Sub-Saharan Africa
 - Skills development (>30 additional staff)
 - Enhancement of Technology Platforms

Goals

- · Vaccines used in immunization programmes are safe and effective.
- Vaccine efficacy data and studies are relevant to the target population.
- Vaccines meet the specific needs of the programme, reflected by the tender specifications: i.e. potency, thermostability, presentation, labeling, shipping conditions, etc.

World Health Organization

GBS Project Goals

Phase 1 5 Objectives

- Development of production processes for polysaccharide and monovalent conjugates for GBS serotypes Ia, Ib, II, III & V.
- **2** Formulation development of the pentavalent GBS vaccine
- 3 GMP production and release of intermediates and pentavalent GBS vaccine for Phase 1 study
- 4 Preclinical evaluation of immunogenicity and toxicity
- 5 Regulatory engagement and conduct of First in Human Phase 1 clinical study

GBS Technology Packages

Process Development

Process Development Deliverables

 Partnerships formally established in Q1 2017 and work at Biovac began in Q2 2017. • First-in-human trial expected **2020**

WHO GBS Documents

WHO Preferred Product Characteristics for Group B Streptococcus Vaccines

DE PAR TH ENT OF IMMENIZATION, VACCINES AND BIOLOGICALS Sould Towned and Didney Buch (FIR)

Parameter	Preferred Characteristic
Indication	Prevention of laboratory-confirmed GBS stillbirth and invasive GBS disease in neonates and young infants.
Target Population	Pregnant women, in the second or third trimester of pregnancy.
Schedule	A one dose regimen is highly preferred.
Safety	Safety and reactogenicity profile at least as favourable as current WHO- recommended routine vaccines for use during pregnancy (influenza, tetanus toxoid, acellular pertussis).
Efficacy	Available evidence supportive of 80% protection against combined risk of laboratory-confirmed GBS (all serotypes) stillbirth and invasive disease in the offspring.
Strain and serotype coverage	The serotypes in the vaccine formulation must cover at least 90% of the current invasive disease isolates in the target region.
Adjuvant Requirement	Preference for the absence of an adjuvant.
Immunogenicity	Established correlate/surrogate of protection based on a validated assay measuring antibody levels/ functionality in the mother and/or the neonate.

Parameter	Preferred Characteristic
Non-interference	Demonstration of favourable safety and immunologic non-interference upon co-administration with other vaccines recommended for use in pregnancy. Demonstration of non-interference with immune responses to relevant vaccines from the Expanded Program of Immunisation in infants of vaccinated mothers.
Route of administration	Injectable (IM, ID, or SC) using standard volumes for injection as specified in programmatic suitability for PQ or needle-free delivery.
Registration, prequalification and programmatic suitability	The vaccine should be prequalified according to the process outlined in Procedures for assessing the acceptability, in principle, of vaccines for purchase by United Nations agencies. WHO defined criteria for programmatic suitability of vaccines should be met
Value proposition	Dosage, regimen and cost of goods amenable to affordable supply. The vaccine should be cost-effective and price should not be a barrier to access including in low and middle income countries.

GBS Project: African context and significance

Last successful <u>novel</u> vaccine development project in South Africa was OPV in 1950s.

THE BIOVAC INSTITUTE

- GBS Vaccine Development Project is a significant milestone for vaccine development in Africa
 - Addresses specific African disease burden
 - Responds to an unmet health need
- Contributes to socioeconomic development and the bioeconomy in Africa

THANK YOU

patrick@biovac.co.za