

Process economy for vaccines

DCVMN 10 March 2017

Outline

Vaccine production today and tomorrow

Process economy for vaccines

Strategy for process economy calculations

Case study 1

• Single-use strategy for microbial fermentation

Case study 2

• Evaluation of productivity for modernizing a vaccine process with a different purification technique

Conclusions

Background vaccine production

Need for updated vaccine processing and process optimization for global access

Vaccine production today

Processes developed decades ago

Old cell substrates or eggs

Limited purification

Significant expertise required

Processes difficult to scale up
Centrifugation
Fixed installations
Roller bottles

Unfavorable process economy					
Low yields					
Long process times					
Labor-intense processes					
Dedicated facilities					

Increased regulatory requirements

Open handling

Batch variability

Serum supplementation

Vaccine production tomorrow

Processes developed decades ago	Processes difficult to scale up	Unfavo Effici proce	
Platform cell lines	Scalable technologies enabled by, e.g., single-use technologies		
Efficient purification			

Unfavorable process economy Efficient and rational process design

Flexible facilites

Increased regulatory requirements

Closed handling

QbD

Chemically defined cell culture media

Process economy considerations for vaccines

Process re-designs	
Low productivity	
Technology change	
Low yield	
Purity issues	
Robustness issues	

New vaccine introduction
Market size
Cost structure
Expected profit

Will the vaccine be profitable?

Market analysis

Business drivers

- Market size
- Market share/competition
- Market growth
- Profitability
- Uncertainty

Business case Detailed process economy

What will affect the process economy for a vaccine product?

- Facility construction
- Facility utilization
- Cost structure contributions: USP, DSP, QA, QC, logistics, etc.
- Product titers
- Raw materials

USP = upstream production DSP= downstream production

29256324AA I Mar. 2017

Process design will effect process economy

Yield Robustness Number or process steps Unit operations Automation/smart engineering Chromatography resins Raw materials/chemicals Platform processes Disposables vs stainless steel

Process economy calculation tools

Examples of software

- BioSolve[™]
- SuperPro Designer
- SchedulePro
- Microsoft[®] Excel[®]

Process economy outcome...

...will never be better than the input data to simulation model

Strategy for process economy calculations

Proposed workflow for process economy calculations

Scope/objectives

Collect input data—identify differences and similarities

Make assumptions

Identify cost categories to investigate

Calculations

Analyze outcome

Case study: comparing single-use to stainless steel strategies for microbial fermentation

Objectives

Estimation of batch production cost

Stainless steel or single-use equipment

Equipment choice

Effects on the production capacity of the facility

Comparing facility types

Single-product to multi-product facility

Equipment strategy

How does it affect the total annual cost at different facility utilization scenarios?

Differences between systems

Stainless steel system

- Fixed piping
- Valves, steam traps
- Mechanical seals
- SIP and CIP cycles
- Maintenance
- Limited adaptability

SIP = sanitization in place CIP = cleaning in place

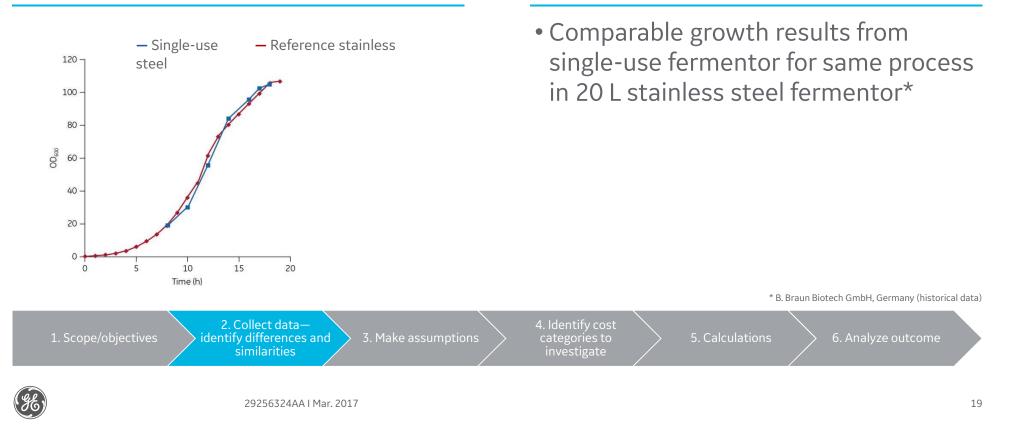
Single-use system

- Flexible tubing
- Integrated filters
- No mechanical seals
- Fast turnaround
- Adaptable

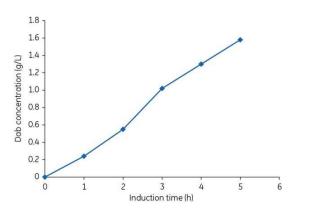
Media preparation: example of differences between systems

In stainless steel equipment

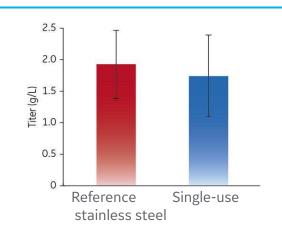
• Sterilize-in-place, addition of heat sensitive components aseptically


In single-use equipment

- Option 1: sterile filter
- Option 2: autoclave in separate vessel, add to fermentor aseptically

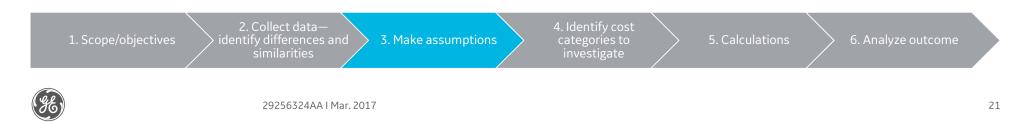

Growth comparison using optical density

Optical density in single-use and stainless steel fermentor


Comparison of dAb expression

• Linear expression after induction

dab expression in single-use fermentor and stainless steel fermentor



- Titer comparable with reference
- Some variability, but within expected range

General assumptions

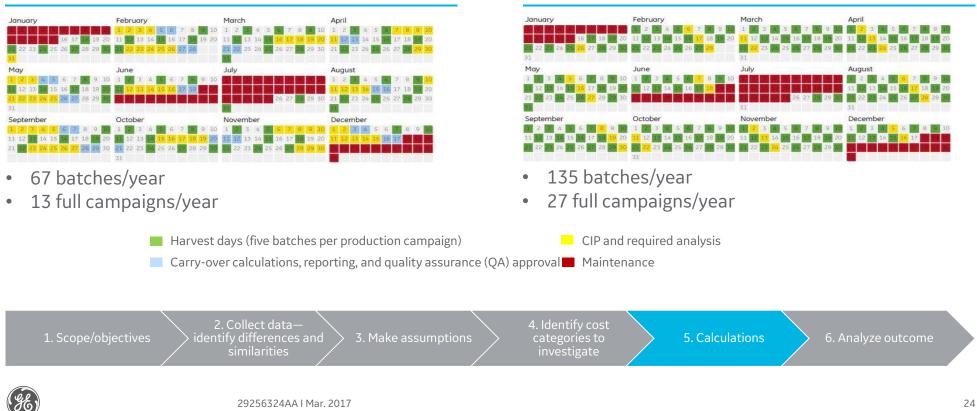
- 300 fermentation days/year available
- Cost of labor: 100 USD/man hour
- Labor performed in two shifts
- Batch failure rate: zero
- Capital investments (including 10% interest) and qualification costs will be spread over the number of batches that can be produced over the depreciation time (10 years) for the equipment
- For multi-product, each product is produced in campaigns of five batches

Unit operations with identical needs excluded from the model

Examples

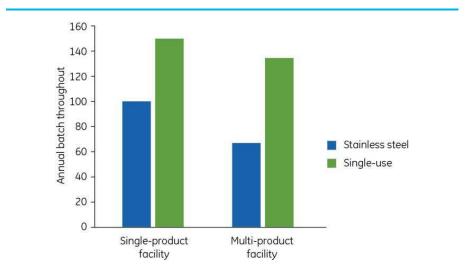
- Seed train procedure in shaker flasks
- Type and amount of medium components
- Minor hardware such as scales and tube welders
- Minor disposables such as C-Flex[®] tubing, pump tubing, syringe filters, vials, and similar

Cost categories


- Capital investments
- Installation and operation qualifications (IQ/OQ), performance qualification (PQ), and cleaning validation
- Production related costs:
 - Preparations prior to fermentation
 - Fermentation process in the production facility
- Disposables, chemicals, water for injection (WFI), steam, and similar
- Annual requalification and maintenance

1. Scope/objectives	2. Collect data— identify differences and 3. Make assumptions similarities	4. Identify cost categories to investigate	5. Calculations	6. Analyze outcome
96)	29256324AA Mar. 2017			

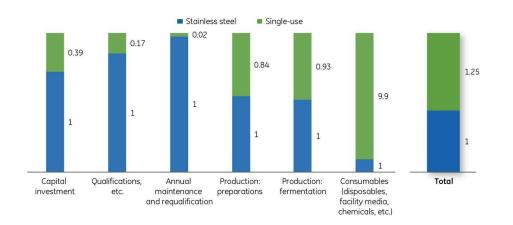
23


Production schedules for multi-product facility

Stainless steel equipment

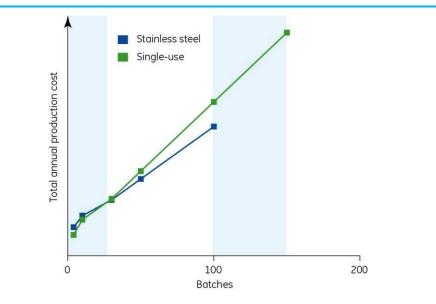
Single-use equipment

Production capacity



Single-use equipment enables higher throughput in both types of facilities

Doubled production capacity enabled in multi-product facilities with single-use equipment


Cost per batch: multi-product facility

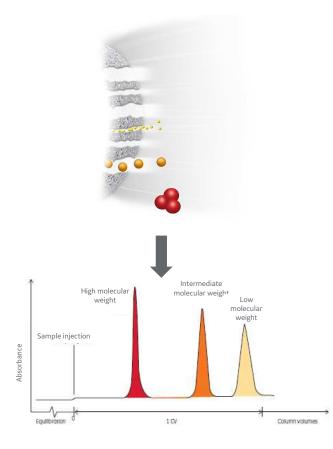
- Stainless steel cost is higher for
 - Capital investment
 - Qualifications
 - Annual maintenance and requalification
- Equal cost for
 - Production (preparations and fermentation)
- Single-use cost is higher for
 - Consumables (disposables, facility media, chemicals, etc.)

Annual production cost in microbial fermentation

Total annual production cost

Comparison stainless steel and single-use equipment

- Single-use equipment is advantageous:
 - if facility utilization rate is low or
 - when a high production capacity is needed
- Stainless steel equipment is advantageous:
 - at mid-facility utilization rates and when capacity is not a limiting factor

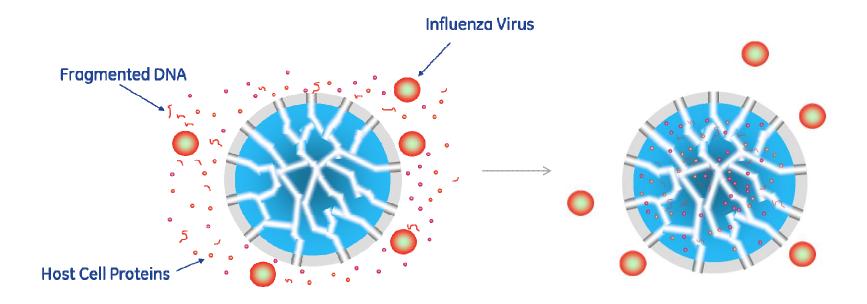

Evaluation of productivity for modernizing a vaccine process with a different purification technique

Study objectives

Evaluate the effect on productivity by replacing a size exclusion chromatography (SEC) step with a core bead chromatography step in a vaccine process in different production scales

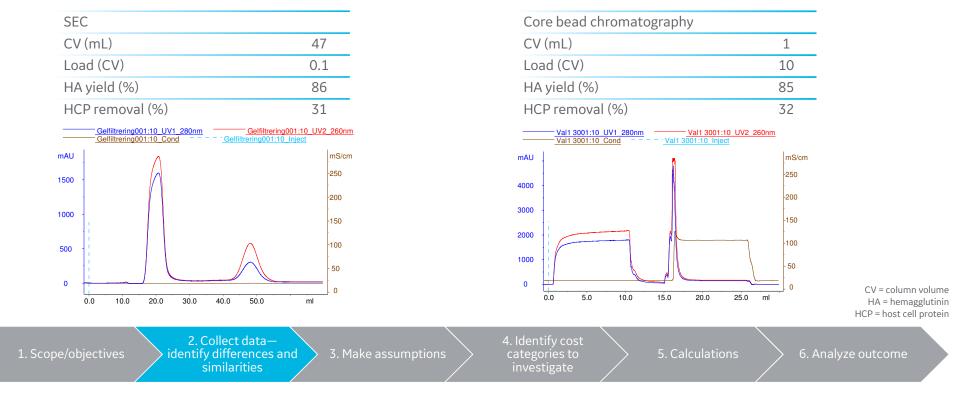
Size exclusion chromatography (SEC)

29256324AA | Mar. 2017

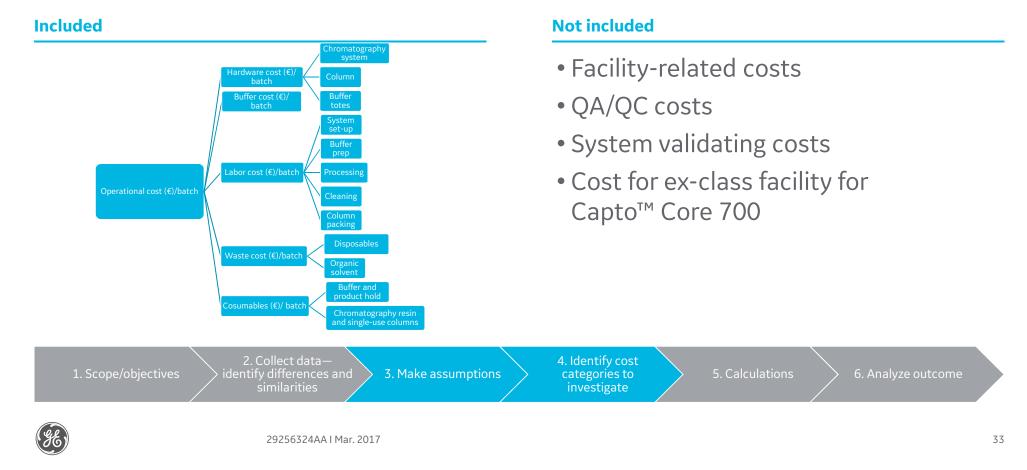


Exluded from pores

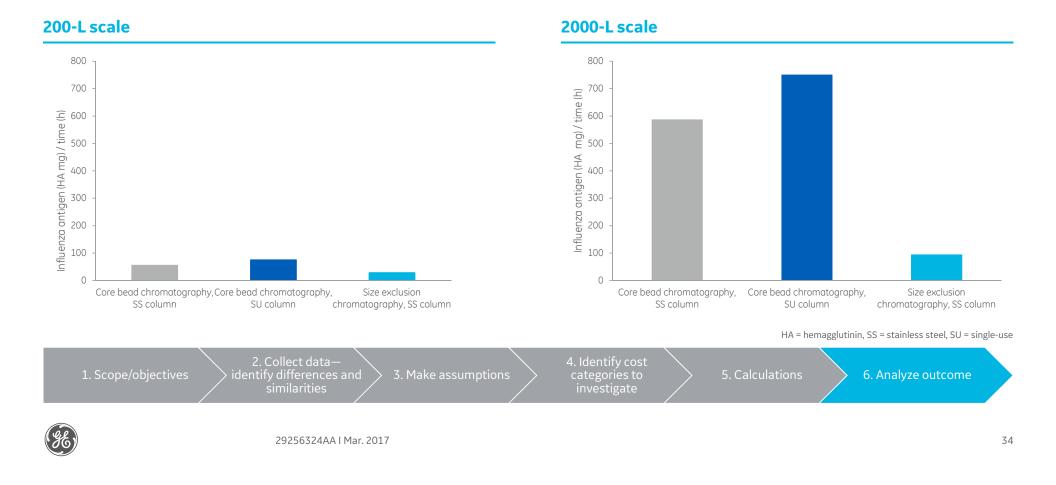
- Enter a fraction of the pores
- 😌 🛛 Enter all pores



Core bead chromatography: host cell proteins and DNA fragments bind to the core and viruses stay in the void



Data collection for comparison of SEC and core bead chromatography: lab-scale experiments with influenza virus



Assumptions for comparison of SEC and core bead chromatography

Productivity for SEC and core bead chromatography

Cost comparison stainlesss steel versus single-use technologies

Single Use vs Stainless Steel savings

User reports – compiled data from publications and conference presentations

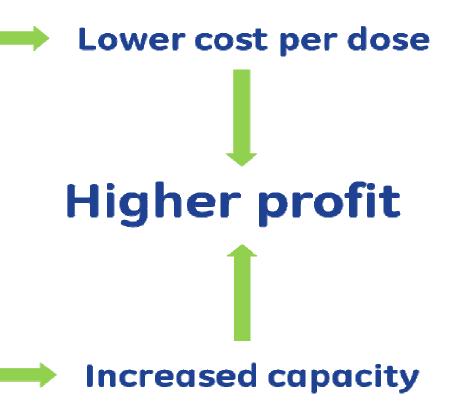
Users reports – last 5 years Savings with Single Use versus Stainless Steel

Company	Consumabl es	Facility Cost	Facility footprint	Labor	Time to build	Turnover time	Water /Energy	Capacity increase	COGs
Large Vaccine	+200%	-40%			-50%		-70% / -45%		-40%
Small Vaccine		-75%							
Large pharma	+120%	-50%	-25%	-48%		-70%		+30%	-57%
Large Pharma		-60%				-50%			-25%
Large biotech		-75%	-75%		-50%		-80% / -80%		-67%
Large Biotech		-25%	-35%		-25%		-85% / -25%		
Small biotech	+250%			-45%	-25%				-25%
СМО	+50%	-50%		-10%	-50%	-25%			-30%

Substancial savings by using SUT despite increased consumables cost

Single Use \$ savings - reports from users 5 years

- Facility cost savings, footprint reduction
- Facility build-out time savings
- Equipment cost savings
- Labor cost savings
- Cycle turnover time savings
- Water, chemicals and energy savings



Benefits of single-use technology

- Less handling can reduce the required FTEs, leading to lower labor cost.
- Lower capital investment as some equipment can be omitted.
- If the production process is not limited by the equipment, more batches can be produced.
- Eliminate cleaning requirements and time consuming QA/QC, for faster campaign turnaround time.
- Excluding of some equipment allows for smaller facility, reducing capital investment.
- Less chemical consumption and waste.

QA/QC = quality assurance/quality control

29196569 AA | 23 March 2016

Conclusions

Conclusions

(GE)

29256324AA | Mar. 2017

Paradigm shift for vaccine production from lab bench process to rational design

Start early with process economy in process development

Integrate process economy as a part of process development

Use a strategy for process economy calculations

Productivity can be increased by rational process design

gelifesciences.com

GE, the GE Monogram, Capto, and Xcellerex are trademarks of General Electric Company.

Biostat is a trademark of Sartorius Stedim Biotech GmbH. C-Flex is a registered trademark of Saint-Gobain Performance Plastics. Biosolve is a trademark of Biomatrica, Inc. Excel and Microsoft are registered trademarks of Microsoft Corporation.

© 2017 General Electric Company.

All goods and services are sold subject to the terms and conditions of sale of the company within GE Healthcare which supplies them. A copy of these terms and conditions is available on request. Contact your local GE Healthcare representative for the most current information.

For local office contact information, visit **gelifesciences.com/contact**

GE Healthcare Bio-Sciences AB Björkgatan 30 751 84 Uppsala Sweden

