

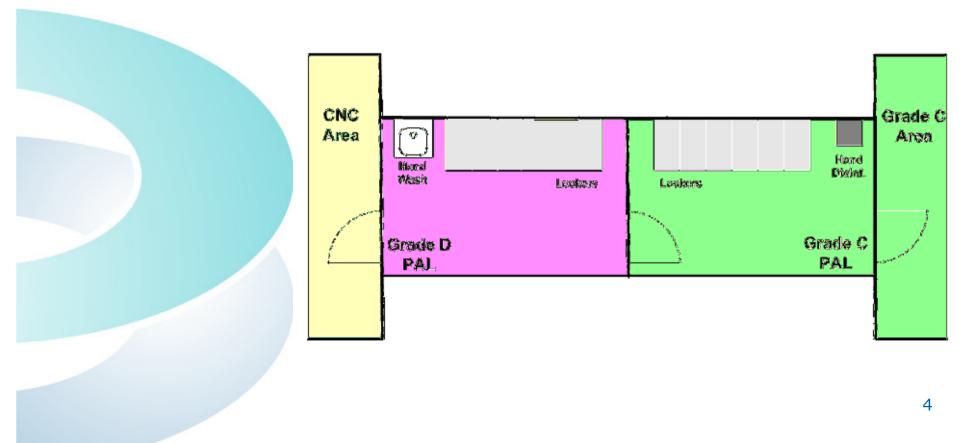
Differences in the Facility Design, Europe & Asian Developing Countries

Presentation Contents

Facility design differences between Europe and Asian developing countries will be discussed based on some examples:

- Personnel / material air lock design
- Clean room floor construction options
- UAF areas for autoclave unloading
- Design of aseptic filling facilities (room arrangements, RABS / isolator design)
- Design of exhaust HEPA filter housings
- Design of technical areas
- Project schedule / realization time

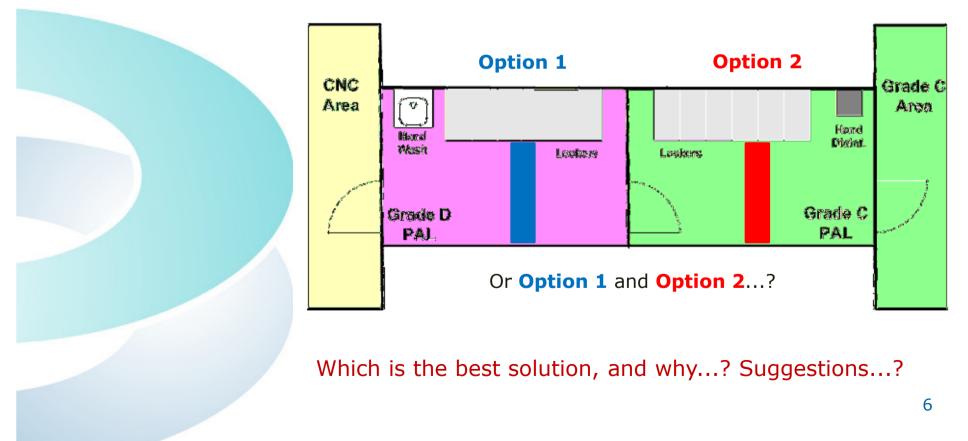
For questions marked in red, the audience is invited to provide answers and suggestions



Regulatory requirements:

- Required to separate different areas (e.g. different clean room grades, bio-positive & bio-negative areas, etc.)
 - Different clean room grades must be cascaded
- Door interlock
- Furniture requirements: Hand wash sinks, hand disinfection, mirror, locker cabinets, etc.
 - Step-over bench (for shoes change) to divide rooms into a «clean» and «less clean» side

Typical design example found in Asian facilities:

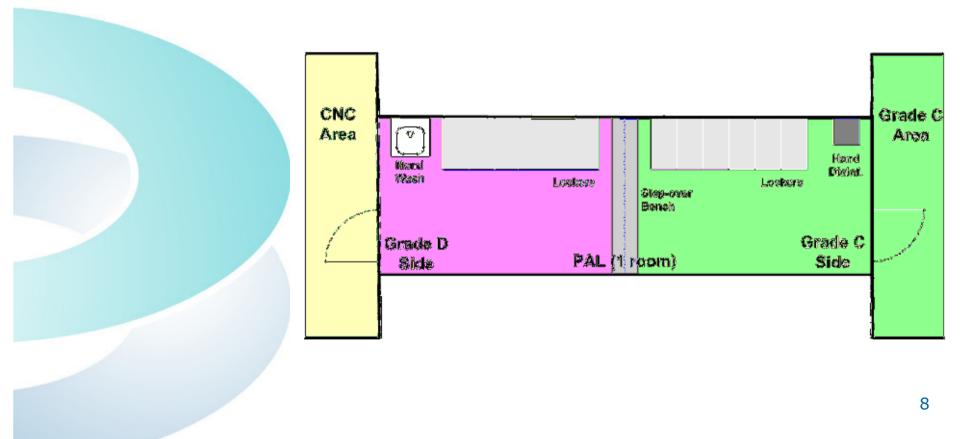

Typical design example found in Asian facilities:

- Room grades are cascaded: CNC => D => C
- One room to take off the CNC garments, one room to don the grade C garments
- One clean room grade per room

=> The big question: Where shall the step-over bench be placed...?

Position of the step-over bench:

Problems with placing the step-over bench:


- According to the guidelines, a step-over bench (shoes change) should be used to separate the clean area from the less clean area
 - However, the requirements for grade D or C are strictly defined, there is e.g. no "grade C less clean" classification
 - Since the shoes should be changed while crossing the step-over bench, the following problems exist with option 1 and/or option 2 on the slide before:

=> Surface contamination (bioburden) is transferred via the shoes from CNC to D and from D to C

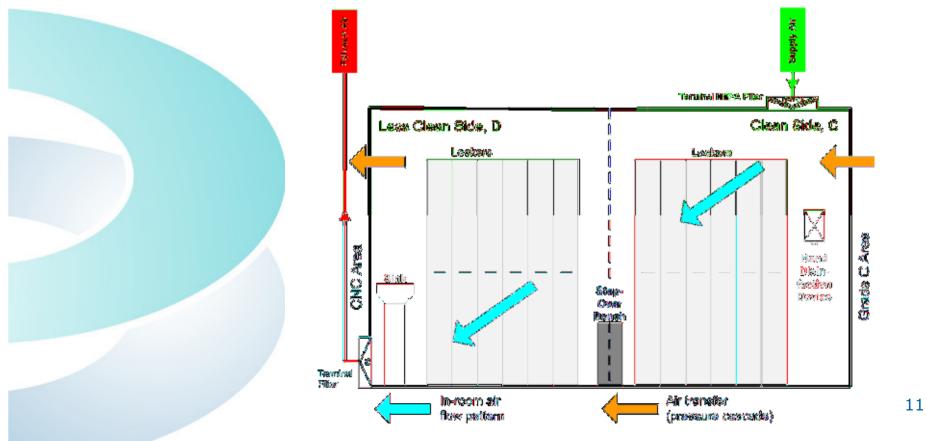
Suggestions to solve this problem...?

Typical design example found in European facilities:

Typical design example found in European facilities:

- Room grades are cascaded (CNC => D => C), but in one common PAL room
 - The PAL room is separated into a D side (less clean) and a C side (clean) by the step-over bench
- CNC garments are left on the D side, C garments are donned on the C side

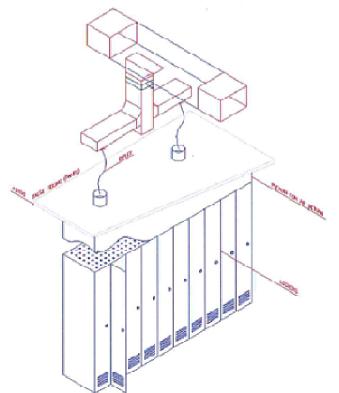
=> How can one room be classified with 2 different clean room grades...?


Typical design example found in European facilities, monitoring limits:

	D Side	C Side
Air quality, particles	Grade C limits	Grade C limits
Air quality, microbio. contamination	Grade C limits	Grade C limits
Surface cleanliness, microbio. contamin.	Grade D limits	Grade C limits

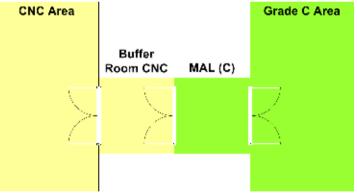
To achieve a grade C air quality in the whole room, also on the D side, is relatively easy. This mainly depends on the kind of HEPA filter used, the **air change rate** and the pressure cascade

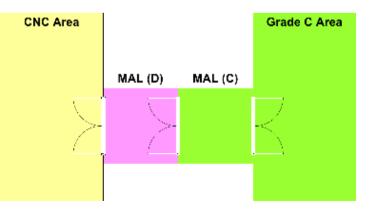
Keeping grade C air quality on the D side:



Surface cleanliness, microbiological contamination:

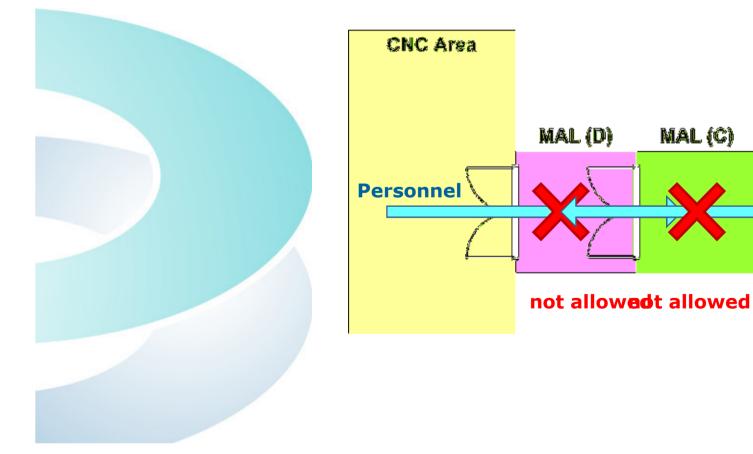
- While maintaining a grade C air quality in the whole room is relatively easy, the true challenge is to control the surface cleanliness (because personnel transfers contamination from one area to another)
- In the example above, bioburden is transferred from CNC to the D side (e.g. via the shoes), which has been accepted (less critical bioburden requirements for D)
 - The transfer from D to C has been realized with regard to minimization of the bioburden carry-over risk (position of the step-over bench, C is the critical production area)


Locker cabinets connected to the exhaust air, for smelly shoes or wet clothes:



Typical examples found in Asian facilities for transfers from CNC to C:

What are the advantages...

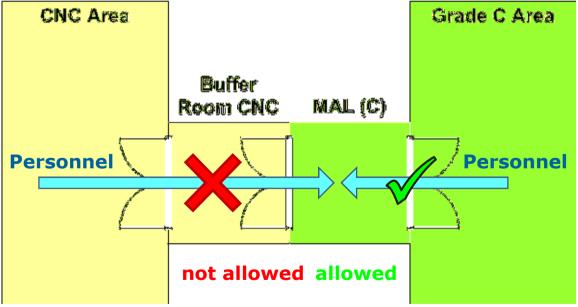


...and disadvantages of these design options?

Problems with example 1, CNC => D => C:

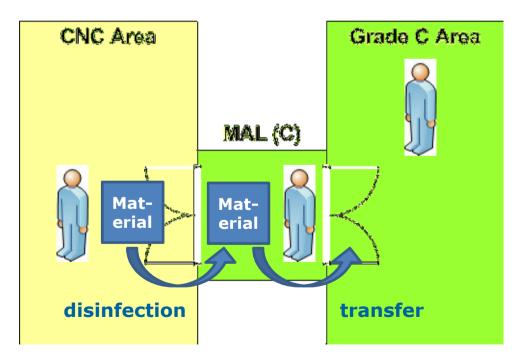
Grade C Area

Personnel


Problems with example 1, CNC => D => C:

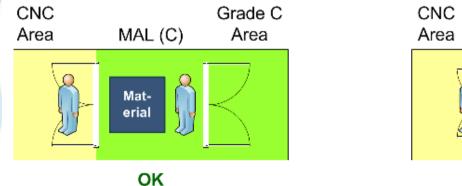
- Personnel should not enter the grade D MAL from the CNC side (different grades, no PAL)
 - Personnel should not enter the grade D MAL from the C side (different grades, no PAL)
 - The only option would be to realize the transfer **without personnel entering the D MAL** (only the material enters the D MAL, which may be difficult to realize)
 - In this case, the number of disinfection steps has to be discussed then: Two? From CNC to D and from D to C?
 - => Suboptimal solution

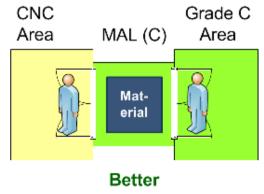
Material Air Lock Design Problems with example 2, CNC => CNC => C:


Problems with example 2, CNC => CNC => C:

- Personnel should not enter the grade C MAL from the CNC side (different grades, no PAL) => material has to be loaded / unloaded from the MAL without personnel entering the MAL
- Personnel can enter the grade C MAL from the C area to load / unload material
 - The need for a buffer room should be questioned, because it has the same classification as the rest of the CNC area (which is even no formal clean room grade)
 - The buffer room does not contribute to the prevention of contamination carry-over, only complicates the material transfer procedure
 - => Better, but still suboptimal solution

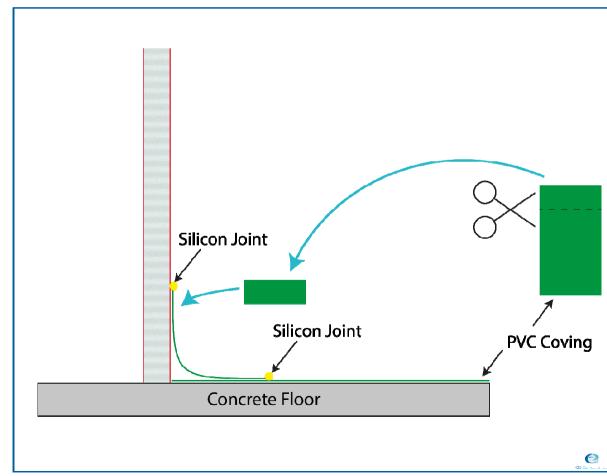
Material Air Lock Design Optimized solution CNC => C in one MAL:


Optimized solution CNC => C in one MAL:


- Again, to achieve grade C limits (particles and bioburden) for the air in the MAL is not a problem. This mainly depends on the HEPA filter used, air change rate and the interlock time for air flushing
- The true challenge is again to control the bioburden on the surfaces
- An adequate disinfection procedure is needed for material transfers from CNC to C
- For critical transfers (e.g. CNC directly to B, or materials with complicated surfaces which are hard to disinfect manually), e.g. VHP fumigation should be considered

MAL sizes for material transfer:

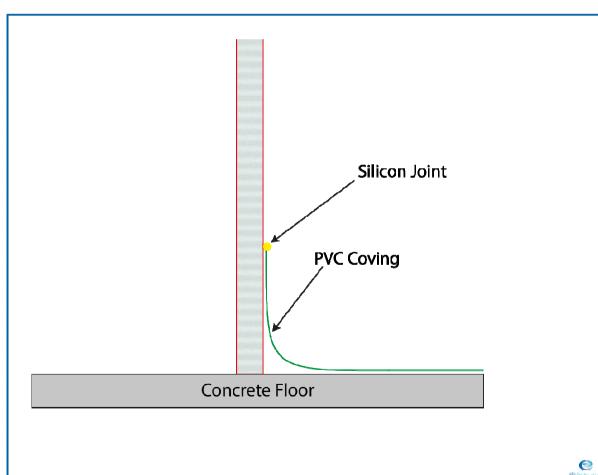
Generally, the smallest possible MAL size is the best => minimization of the contamination carry-over risk
 The risk is lowest for e.g. a small pass-through box because in such a box, all the inner surfaces can be disinfected easily as well



1. Option from Asia:

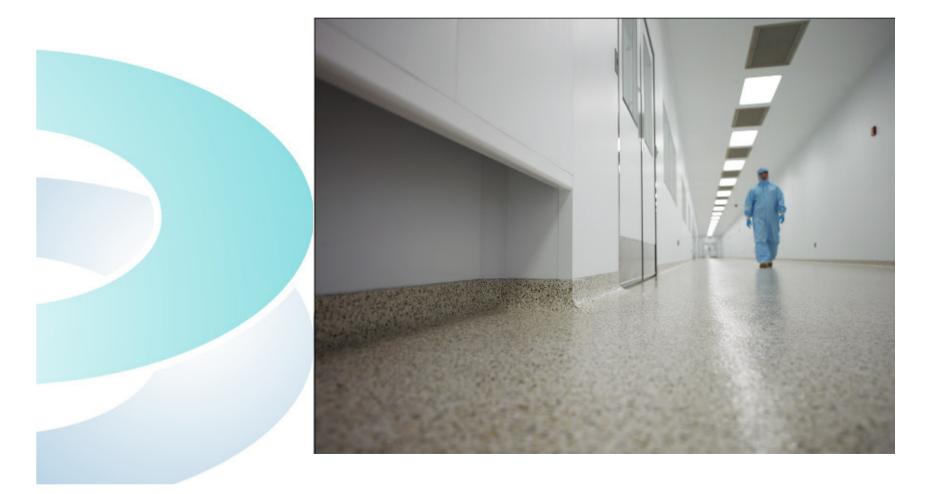
- 1. Concrete floor
- 2. Clean room walls
- 3. PVC floor cover / coving
- 4. Cut a piece of the PVC floor cover to serve as coving, and put it close to the clean room walls
- 5. Close the gaps with silicon joints

- 1. No chamfer (support below the coving)
- 2. Not really easy to clean because of irregularities
- 3. Easy Whymisgthis option suboptimal?
- 4. Complicated construction
- 5. Floor cover is not continuous


Clean Room Construction – Examples Option 1

2. Option from Asia:

- 1. Concrete floor
- 2. Clean room walls
- PVC coving → one piece overlapping the clean room wall (the floor cover directly covers a part of the wall panels)
- 4. Close the gaps with silicon joint



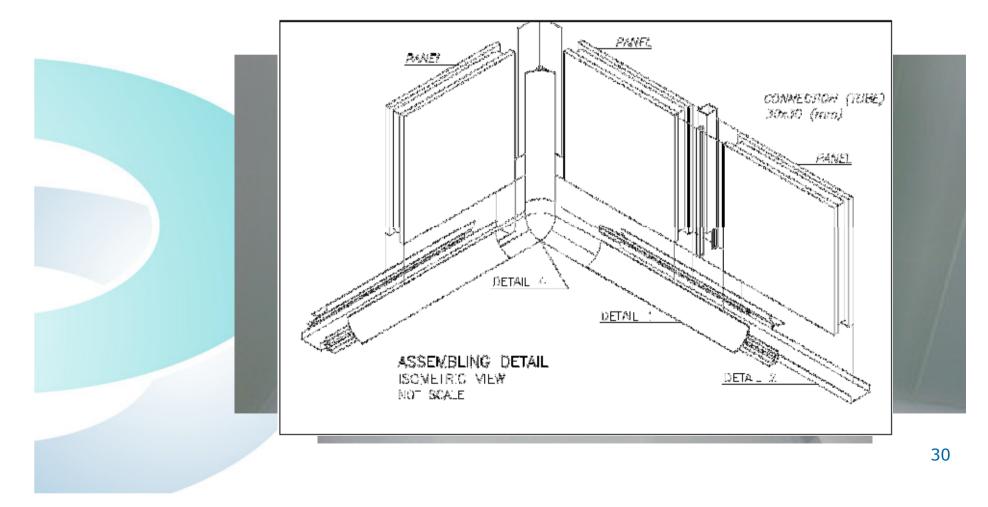
Less worse than option 1 because the floor and coving is one piece, but...

- 1. No chamfer (support below the coving)
- 2. May Whye isathis aption caubopiting alarities
- 3. Easy to damage (no support below coving)
- 4. Difficult corner construction
- 5. Floor cover is not continuous

Clean Room Construction – Examples Option 2

3. Option from EU: 1. Concrete floor 2. Epoxy floor 3. Install U-profile for clean room walls 4. Fix clean room walls into **U-profile** 5. Put silicon joint between Silicon Joint Chamfer wall and floor 6. Fix chamfer onto silicon **PVC Coving U-Profile of Soil** joint Silicon Joint **Epoxy Resin Floor** 7. PVC coving for covering chamfer **Concrete Floor** 8. Close the gaps with silicon joint 0

Better because...


- Stability of the construction, chamfer (support) below the coving
- Continuous floor cover in one piece
- Can be cleaned / decontaminated / disinfected to a high degree

But...

Complex installation

Clean Room Construction – Examples Option 3

4. Option from EU:

- 1. Concrete floor
- 2. Epoxy floor
- 3. Install U-profile for clean room walls
- 4. Fix clean room walls into U-profile
- 5. Put silicon joint between the U-profile and the floor, and between the Uprofile and the wall panel

The best option because...

Simple construction

- Easy to clean as well, although there is no coving
- Air-tight to a high degree if silicone joints are made properly
- Continuous floor cover in one piece
 - Modification of the clean room structure (repositioning of walls) is relatively easy

Clean Room Construction – Examples Option 4, Walls and Windows

Clean Room Construction – Examples Option 4, Stainless Steel Wall Panels

Clean Room Construction – Examples Option 4, Glass Wall Panels



UAF for Autoclave Unloading

Situation sometimes found in Asian facilities:

What is the purpose of the grade C UAF area...?

(or similarly, unloading in B / B UAF)

UAF for Autoclave Unloading

Purpose of the UAF for autoclave unloading:

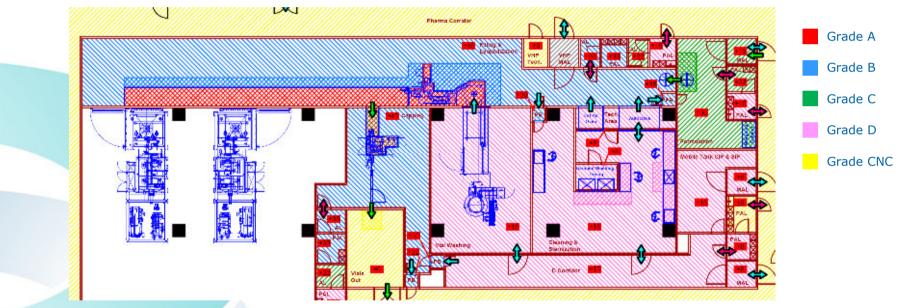
- Is the UAF used to handle sterile goods openly (e.g. assembling operations or closing of bottles)?
 Is a grade C UAF suitable to handle sterile goods (aseptically)?
- Problem: If sterile goods really must be handled aseptically, an A in B area would be required. This area might be quite large to unload an autoclave, with operators having to walk into this area, which should not be the case for grade A
- Better solution: Prepare the goods to be sterilized in a way that they will remain sterile if unloaded into a standard clean room (without UAF)

UAF for Autoclave Unloading

Examples for proper preparation of goods for sterilization:

Packing and sealing of goods in steampermeable bags

Pre-assembling with vent filters which are gas-permeable

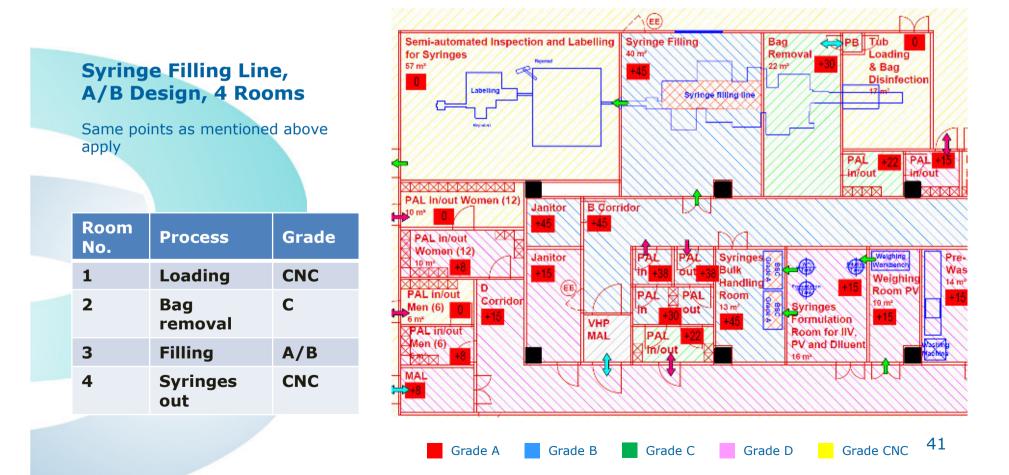


Design of Filling Lines (Grade A/B) Typical design found in Asian facilities:

- One independent clean room compartment per filling line (with dedicated airlocks, corridor, washing area, etc.)
 - Each process step (e.g. vial washing / sterilization, filling, capping) is performed in a separate room
 - Different environment (clean room grade) for different process steps

Design of Filling Lines (Grade A/B), Layout Example Asia

Lyo-Line, Grade A/B Design, 5 Rooms

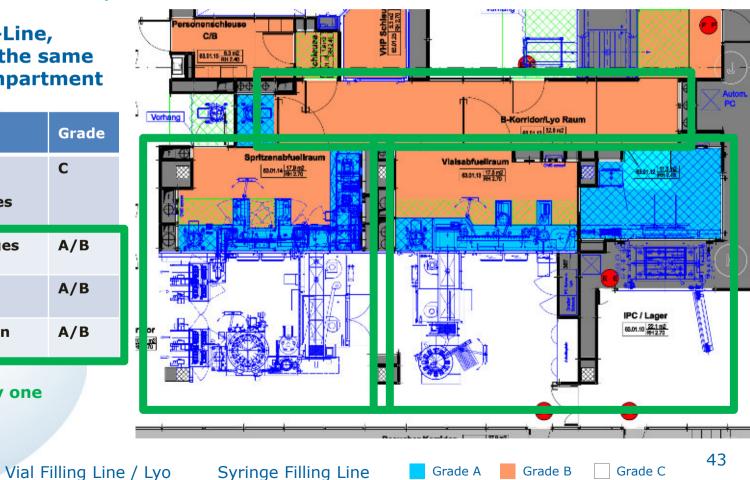

Each process step has its own room with different clean room grades

- \rightarrow Designed in this way a large area / many rooms are needed
- \rightarrow More complex material, product and personnel flows result

Room No.	Process	Grade
1	Washing / Steri.	D
2	Filling	A/B
3	Capping	В
4	Vials out	CNC
5	Lyo technic	Black

Design of Filling Lines (Grade A/B), Layout Example Asia

Design of Filling Lines (Grade A/B) Design option found in European facilities:


- Multiple filling lines (different products) are located in the same clean room compartment (common corridor)
 - Product separation is achieved by a dedicated AHU per product / filling line, and by a suitable pressure cascade
 - Multiple process steps can be performed in the same room, particularly if there is no open product handling involved (e.g. vial washing, unloading of capped vials)
- Segregation by appropriate equipment design (e.g. enclosure around the vial washer, connected to the exhaust air)

Design of Filling Lines (Grade A/B), Layout Example EU

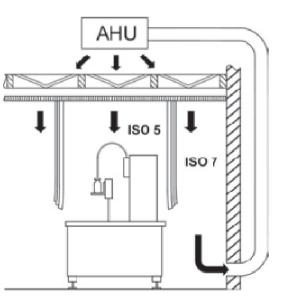
Syringe- & Lyo-Line, A/B Design, in the same clean room compartment

No. 1 I 2 F	Process Loading, Washing, vials/syringes out (shared) Filling syringes	Grade C
2 F	Washing, vials/syringes out (shared)	
	Filling syringes	A / P
•	(dedicated)	A/ D
	Filling vials (dedicated)	A/B
	Lyophilization (dedicated)	A/B

Different options exist to design the environment / enclosure for aseptic filling processes. The most used ones are:

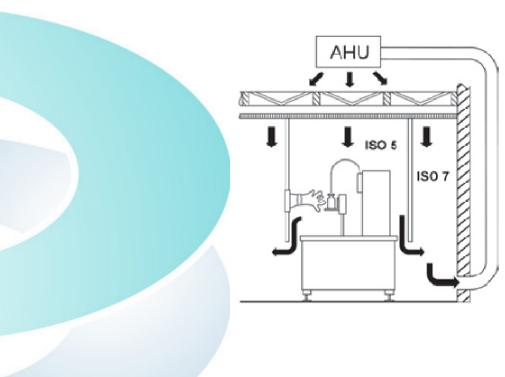
- Grade A in B, open, air flow guided with e.g. curtains (not state-of-the-art anymore)
- Restricted access barrier system (RABS), open, passive
- RABS, open, active
 - RABS, closed, active
- Isolator enclosure

Open RAB systems are currently found in a lot of Asian facilities, and are most likely the preferred option in Asia (currently)

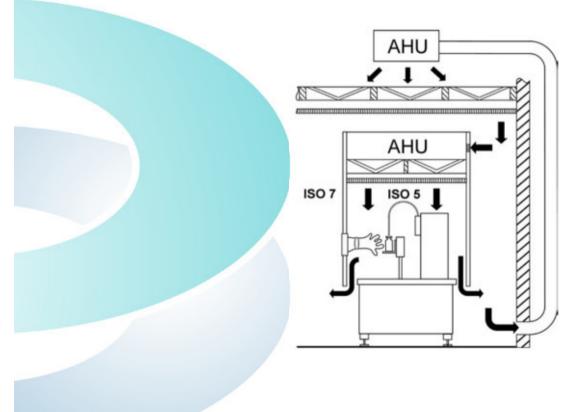


Open RABS

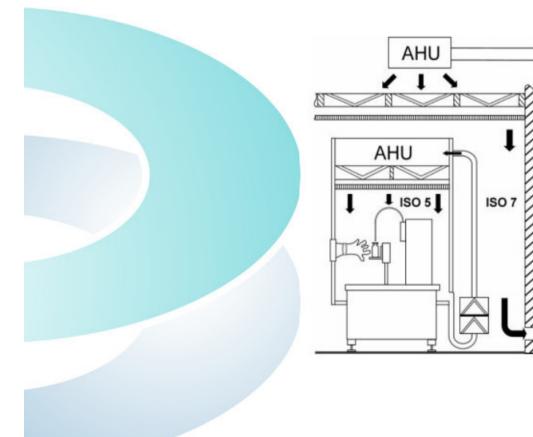
Isolator


Open processing, grade A in B, filling line placed in a clean room:

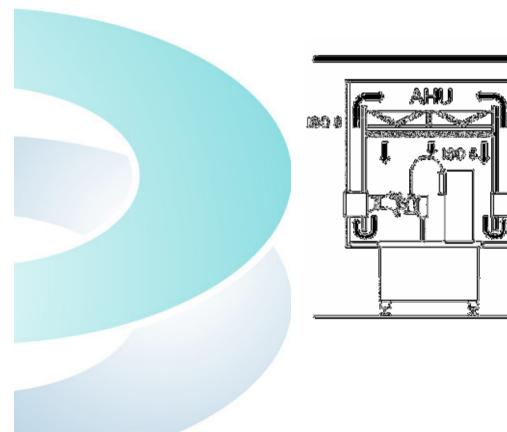
- Air flow guided by curtains around the filling line
- ISO No. reflect the state «in operation»
- Curtains can be opened at any position for interventions
- Not state-of-the-art anymore, limited product protection only


Open, passive RABS:

- The filling line is enclosed by rigid cladding (RABS)
- Interventions only possible via glove ports
- Air is provided to the grade A area via the AHU / FFUs installed as part of the clean room (passive RABS)
- Air recirculates via the grade B clean room (open RABS)


Open, active RABS:

- The filling line is enclosed by rigid cladding (RABS)
- Interventions only possible via glove ports
- Air for the grade A area is provided by a dedicated AHU / FFUs (active RABS)
- Air recirculates from the grade A area via the grade B clean room (open RABS)


Closed, active RABS:

- The filling line is enclosed by rigid cladding (RABS)
- Interventions only possible via glove ports
- Air for the grade A area is provided by a dedicated AHU / FFUs (active RABS)
- Air recirculates from the grade
 A area via dedicated ducts
 (closed RABS)

Isolator:

- The filling line is enclosed by rigid cladding, sealable for fumigation
- Interventions only possible via glove ports
- Air for the grade A area is provided by a dedicated AHU / FFUs
- Internal air recirculation
- Lower requirements for the surrounding clean room (ISO 8, C in operation, or no requirement, D)

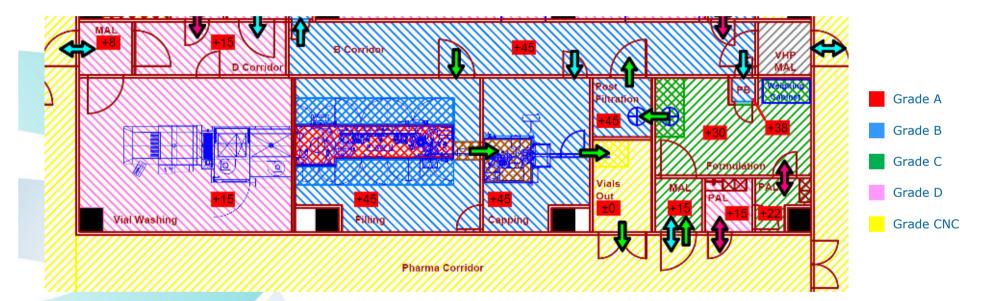
Closed RABS / Isolator:

- A closed RABS is already quite similar to an isolator in terms of the line enclosure, the required AHU, investment costs, etc.
 - However, a closed RABS does not provide the critical advantage of an isolator which can be operated in a grade D or C room
 - Thus, the trend is that western companies go for isolator solutions for new filling line projects

Comparison of main features:

Feature	A in B	oRABS	cRABS	Isolator
Product protection (sterility)	Basic	Better	Best	Best
Operator protection (e.g. biosafety)	No, open	No, open	Good	Best
Negative pressure operation	No	No	No	Possible
Interventions	Direct	Glove ports	Glove ports	Glove ports
Environment for enclosure	В	В	В	min. D
Opening of the enclosure during processing	Allowed	Allowed	Allowed	Not allowed*

*e.g. alpha / beta ports or VHP ALs to be used for all transfers



Comparison of main features:

Feature	A in B	oRABS	cRABS	Isolator
Procedure after enclosure opening in specified environm.	Disinfec- tion / n/a	Disinfec- tion / n/a	Disinfec- tion / n/a	Fumiga- tion
Environmental monitoring efforts (bioburden / particles)	High (B)	High (B)	High (B)	Low (D)
Personnel hygiene / gowning efforts	High (B)	High (B)	High (B)	Low (D)
Relative initial qualification / validation efforts	Low	Low	Medium	High
Relative investment costs	Lowest	Low	High	Highest

RABS vs. Isolator, Layout Example Asia

Vial Filling Line, RABS, 4 Rooms

Each process step has its own room with different clean room grades

- → Optimization potential for space, energy (air exchange rate) and gowning/degowning between the different rooms
- \rightarrow Machine has to match perfectly with the walls (installation challenge)
- \rightarrow Higher monitoring frequencies (grade B has to be monitored each day)
- \rightarrow Cheaper equipment

Room No.	Process	Grade
1	Washing / Steri.	D
2	Filling	A/B
3	Capping	В
4	Vials out	CNC

RABS vs. Isolator, Layout Example EU

Vial Filling Line, Isolator, 1 Room

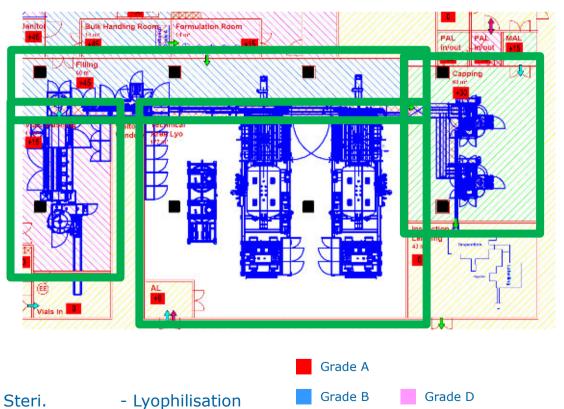
The room includes a filling line with an isolator.

- → Space, gowning efforts and energy saving → optimized option
- → Easier installation (machine does not penetrate walls)
- → Lower monitoring frequencies
- → More expensive equipment

...but the investment in an isolator is worth it because of the easy handling of the overall filling process.

Room No.	Process	Grade
1	Washing / Sterilization, Filling, Capping	C, A isolator

RABS vs. Isolator, Layout Example Asia


- Capping

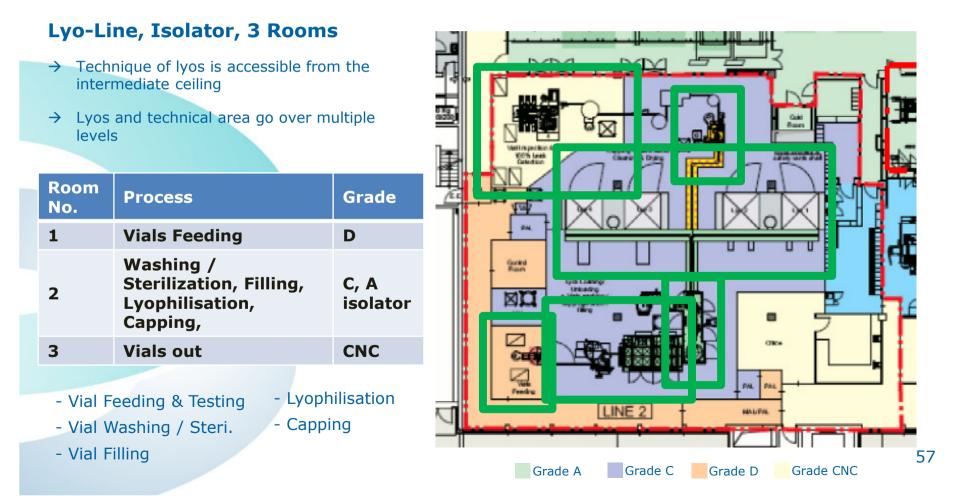
Lyo-Line, RABS, 6 Rooms

Each process step has its own room with different clean room grade.

- \rightarrow Same points than described before
- → Lyos need an extra separate room for the technique

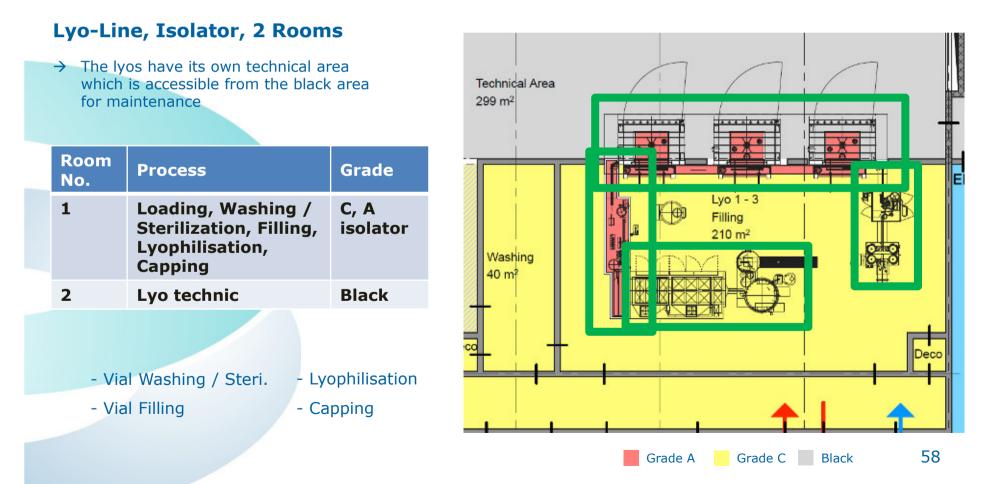
Room No.	Process	Grade
1	Vials In	CNC
2	Washing / Steri.	D
3	Filling / Lyo	A/B
4	Capping	С
5	Vials out	CNC
6	Lyo technic	Black

Grade C


56

Grade CNC

- Vial Washing / Steri.
- Vial Filling



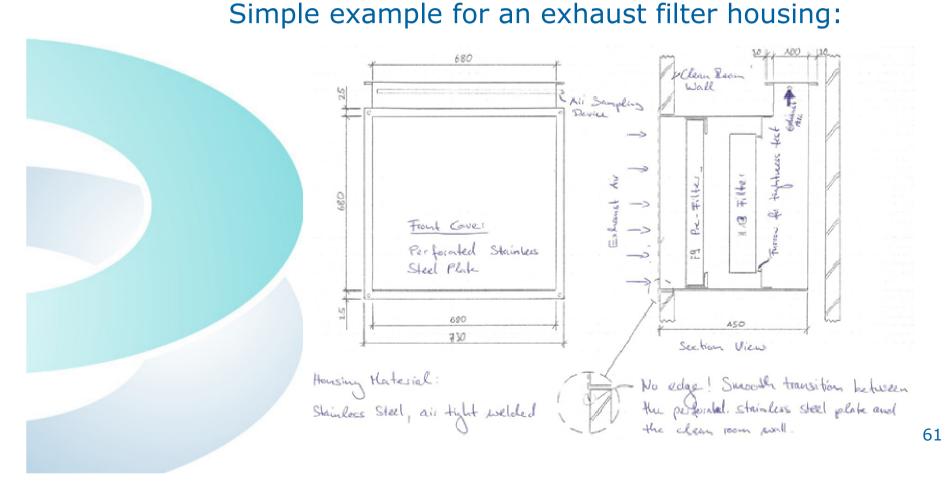
RABS vs. Isolator, Layout Example EU

RABS vs. Isolator, Layout Example EU

Terminal exhaust HEPA Filter Housings Situation:

- Exhaust HEPA filters in production rooms are e.g. required in OSD facilities (for highly active APIs) or in some biosafety relevant facilities
 - Exhaust HEPA filters have to be tested regularly for integrity (similar to the requalification of clean room supply air HEPA filters)
 - This requires a special design for exhaust HEPA filter housings
 - We found that Asian manufacturers are sometimes unaware of this situation / requirement

=> How are exhaust HEPA filters tested, while they are mounted in the housing?


Terminal exhaust HEPA Filter Housings

Integrity testing for terminal exhaust filters:

- The testing procedure is similar to e.g. the DOP or DEHS test for supply air HEPA filters
 - Raw gas, containing aerosol particles, is applied from the clean room side
- Clean gas has to be sampled downstream of the HEPA filter, i.e. in the housing or exhaust duct
- The particles are counted in both, the raw and clean gas
- The leakage or retention rate for particles is calculated

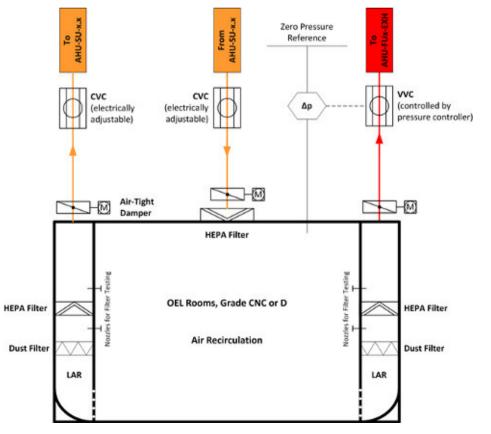
Terminal exhaust HEPA Filter Housings

Terminal exhaust HEPA Filter Housings Simple example for an exhaust filter housing:

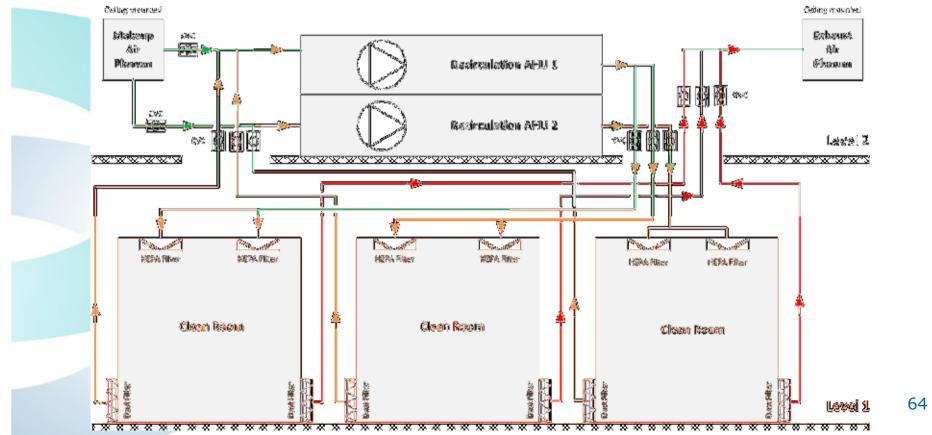
Connection to

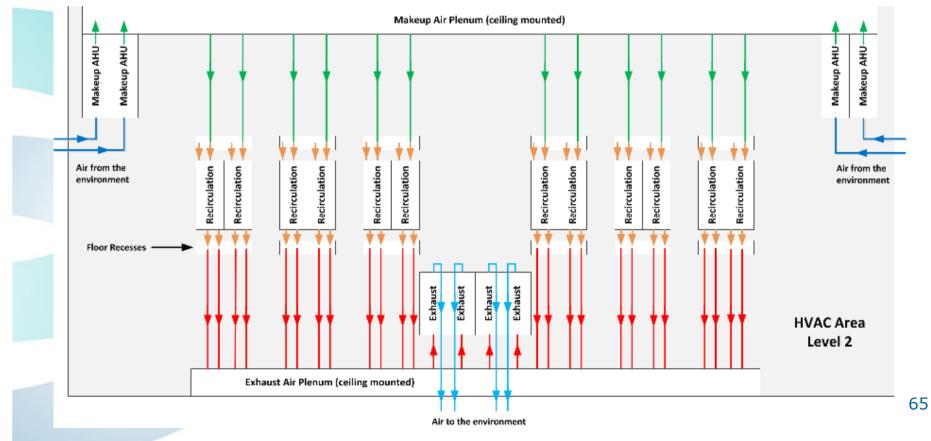
exhaust air duct

Problems with this design: Only air from part of the filter surface is sampled (incomplete filter scanning)


Air sampling device Better solution: Extraction of a homogenous sample further downstream from the filter, in the duct (for integral filter testing)

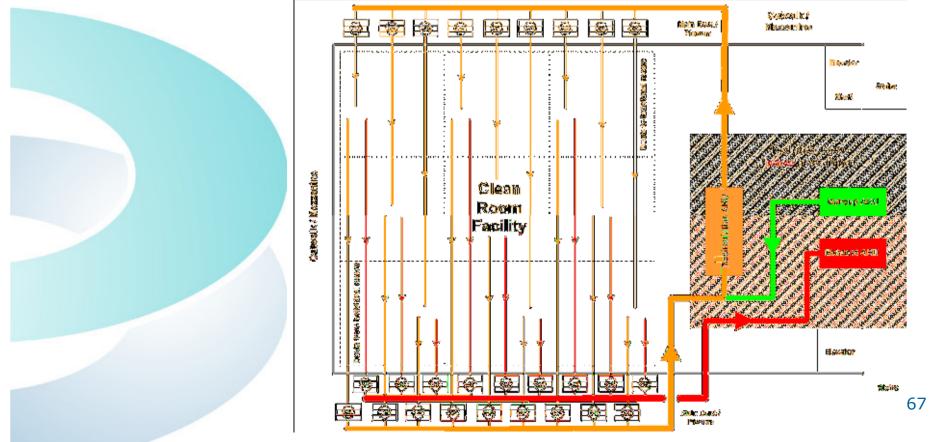
Terminal exhaust HEPA Filter Housings


Hi-tech example for an exhaust filter housing:



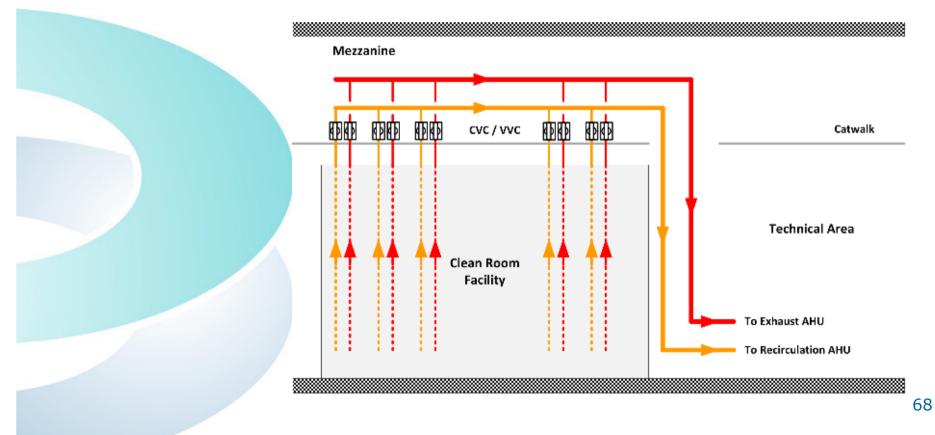
Preferred design in Europe, technical level on top, section view:

Preferred design in Europe, technical level on top, top view:



Preferred design in Europe, technical level on top, advantages:

- Optimized duct routing, ductwork minimized in length
- AHU and all other components requiring maintenance / calibration (sensors, CVC / VVC, dampers, etc.) are installed close together, on the same level => efficient installation, minimization of wiring, etc.
- Easy access because there is a full dedicated building level for HVAC installations
- For makeup air and exhaust air in the example above:
 Partial redundancy allows for continuous operation during maintenance



Alternative found in Asia, technical area on the side, top view:

Alternative found in Asia, technical area on the side, section view:

Alternative found in Asia, technical area on the side, features:

- Longer ductwork system compared with the other option presented
 - Components requiring maintenance / calibration (sensors, CVC / VVC, dampers, etc.) should be installed along a catwalk for easy access, and to minimize walking on the clean room ceiling

The AHU and field elements for control are distributed within a larger area => more wiring, etc. is required accordingly

If there is no space / not enough height for a mezzanine / catwalk (not recommended):

- All components requiring maintenance / calibration (sensors, CVC / VVC, dampers, etc.) should be installed in the technical area, before the ducts "vanish" above the clean room ceiling
- Thus, the ducts leading to individual rooms must be separated in the technical area already, making the ductwork even longer

Project Schedule and Realization

Comparison of the time required for planning and realization of a project:

- On the following slide, 2 project schedules have been compared
- One project was realized in Europe, the other in Asia
- Both projects are similar (installation of a filling line, including clean rooms, HVAC, etc.)

Which Time Schedule belongs to which Continent?

Duration												Мо	nth											
Project Steps	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Project Start & Basis of																								
Design																								
Detail Design																								
Construction																								
Qualification																								

Example of an EU Time Schedule

Duration		Month 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24																						
Project Steps	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Project Start & Basis of Design																								
Detail Design																								
Construction																								
Qualification																								

Example of an Asian Time Schedule

Difference in Time Schedule

- Generally the time for the same project phase is shorter in Asia than in EU (not always an advantage)
- EU: higher time investment in quality control and therefore less investments later for error corrections
- Asia: Wasysdoresethis timed difference appear?->
 could lead to misunderstandings later
- Construction phase is the most similar one regarding duration
- Also qualification takes longer in the EU, due to a thorough and detailed testing
- Long leadtime-equipment should be ordered as early as possible to avoid delays

Further Questions?