Vaccine production: improved supply in the region through collaborations

by Dr. Nora Dellepiane Workshop: Global Registration and Vaccine Shortage Taipei, Taiwan 6 to 10 March 2017

Vaccine types

$\sqrt{}$ Bacterial vaccines:

- Killed (chemical and/or heat), e.g. whole cell pertussis
- Toxoids, e.g. tetanus and diphtheria
- Atenuated: live modified micro-organisms in which the virulent properties have been modified. They are able to replicate and infect cells in the organism but they do not cause the disease, e.g. BCG
- Subunits: polysaccharide vaccines (meningococcal, pneumococcal), acellular pertussis vaccines

✓ Viral vaccines:

- Killed/ inactivated, e.g. Rabies, polio (Salk)
- Atenuated e.g. YF, JE, measles, rubella, mumps and polio (Sabin)
- Subunits: purified protection conferring antigens, e.g. influenza vaccine

Recombinant DNA

✓ Identification of genes

- ✓ Transfer from one organism to another
- ✓ Expression vector for protein syntesis

Quality & Regulation Biologics Using genetic engineering techniques, a gene codifying for the relevant antigen is isolated and introduced into another organism or cell that will express the protein, which following the required purification steps will constitute the vaccine. Usually such technique will render virus like particles, e.g. hepatitis B and HPV

Recombinant HPV L1 VLP Vaccine

Courtesy of Dr. Umesh Shaligram, SIIPL

Live attenuated recombinant vaccine (dengue vaccine)

- ✓ The active substances contained in the CYD-TDV dengue vaccine are 4 live attenuated recombinant viruses representing serotypes 1, 2, 3, and 4.
- ✓ Each monovalent CYD recombinant is obtained separately by replacing the genes encoding the prM and E proteins of the attenuated yellow fever (YF) 17D virus genome with the corresponding genes of the 4 wild-type dengue viruses.

The final formulation contains 4.5–6.0 log10 median cellculture infectious doses (CCID50) of each of the live attenuated dengue serotype 1, 2, 3 and 4 vaccine viruses.

Conjugate vaccines

Polysaccharide vaccines are not immunogenic in young infants, usually under the age of two. The method of conjugation has overcome this difficulty.

Immune response is improved by chemically linking the polysaccharide to a protein ' carrier'. The carrier is often either highly purified tetanus toxoid, or diphtheria toxoid (CRM)

Examples of conjugate vaccines are *haemophilus type b* vaccine, meningococcal A,C, W,Y and also pneumococcal vaccines (PCV 10 and 13)

Vaccine combinations

Individual antigens can be combined in order to provide protection against several diseases, thus minimizing the number of injections and interventions. Examples of combos are

DTP-Hepatitis B

DTP-Hib

DTP-Hepatitis B – Hib

DTP-Hepatitis B-Hib-IPV

Quality & Measles, mumps and rubella Regulation Biologics

Summary type of vaccines

- ✓ Bacterial vaccines: Killed, attenuated and subunits
 ✓ Toxoids: D and T
- ✓ Viral vaccines: Killed, attenuated and subunits
- ✓ Recombinant vaccines: Hepatitis B vaccine, HPV
- ✓ Live attenuated recombinant virus vaccine, dengue
- ✓ Conjugated vaccines: Hib, pneumococcal, meningo
- ✓ Combined vaccines

Source: SANOFI Pasteur website

The vaccine development cycle

Comment

Exploratory stage:	Pre-clinical stage:	Clinical development:	Phase II: Evaluation of	Interpreter The	6 Registration:	and submitted to the	The infectious germs	the vaccines are filled,	during all stages, from
2 to 4 years	1 to 2 years	6 to 8 years	the immune response in	clinical batches and	synthesis stage from	health authorities in	are cultured, harvested	primarily in vials and	distribution to vaccine
Identifying antigens to	Assessing antigens' safety	Testing the candidate	100 to 3,000 subjects	industrial batches	12 to 18 months	order to obtain a	and purified.	syringes and then packed.	administration to patients.
prevent or treat a disease.	in animals and selecting	vaccine in humans.	Phase III: Large-scale tests	of compliance.	All of the data that have	marketing authorization.	After formulation	When the manufacturing	
Selected candidate vaccines	the best candidate vaccine	Phase I: test of safety	of the vaccine's efficacy		been collected during		and freeze-drying	process is complete,	
will continue the process.	to continue the process.	on 10 to 100 subjects	and tolerance on 3,000 to		the preceding stages		(which stabilizes the	the cold chain must	
			40,000 subjects.		are gathered in a file		more fragile vaccines),	be constantly maintained	

 \wedge

Steps involved in vaccine production

GMP compliance: process validation for each step, cleaning validation, preventive maintenance, environmental monitoring, data trending and analysis, media fills, line clearance, etc Quality Controls: IPC, control of intermediates, etc

Steps involved in vaccine production

Virus Growth

Viruses cannot grow on their own, they require a host cell for multiplication

Courtesy: GTN Lot Release Course CDL India

Cell Bank System

Courtesy: GTN Lot Release Course CDL India

WHO references

- ✓ TRS No 978, Annex 3: 2013. Recommendations for the evaluation of animal cell cultures as substrates for the manufacture of biological medicinal products and for the characterization of cell banks. Replacement of annex 1 of WHO TRS 878
- ✓ TRS 999, Annex 2: 2016 WHO good manufacturing practices for biological products Replacement of Annex 1 of WHO Technical Report Series, No. 822
- ✓ Vaccine specific requirements.

Example of Hib polysaccharide conjugated vaccine

WHO Reference

© World Health Organization WHO Technical Report Series, No. 897, 2000

Annex 1

Recommendations for the production and control of Haemophilus influenzae type b conjugate vaccines¹

Example of a polysaccharide conjugate and nonconjugate vaccine

Haemophilus influenzae type b capsular polysaccharide (PRP)

Formulation of different Hib vaccines

Table A1 Formulation of some currently available *H. influenzae* type b conjugate vaccines^{a,b}

<i>H. influenzae</i> polysaccharide material	Polysaccharide per single human dose (µg)	Nature of carrier protein	Protein per single human dose (µg)	
Polysaccharide (size-reduced)	25	Diphtheria toxoid	18	
Polysaccharide (low relative molecular mass)	10	Diphtheria CRM 197 protein	25	
Polysaccharide (size-reduced)	7.5	Outer membrane protein complex of <i>Neisseria meningitidis</i> group B	125	
Polysaccharide	10	Tetanus toxoid	20	

^a For guidance only.

uality &

Regulation

Biologics

^b *H. influenzae* type b conjugate vaccine is a preparation of capsular polysaccharide from *H. influenzae* type b covalently linked to carrier protein

Control of the Polysaccharide Specifications Summary

Process step	"Component"	Assay	Specification	
Hib fermentation	Strain	NMR	Type b	
	Seedlot system	х	Consistency	
	Culture media	x	No human blood-group antigen-like material and no high-molecular-weight polysaccharide	
	Harvest	pH, OD, polysaccharide	Consistency	
	Contamination	Gram-smear	Pure	
Polysaccharide	Identity test	NMR	PRP	
purification	Molecular size distribution	HP-GPC	Consistency	
	Moisture content	Karl Fisher	Х	
	Ribose	Orcinol	>32% dry weight	
	Phosphorus	Ames	6.8%-9% dry weight	
	Protein	Lowry	<1% dry weight	
	Nucleic acid	UV260	<1% dry weight	
	Endotoxin	LAL Rabbit test	<10 IU/ µg PRP 1 µg PRP / Kg	
Polysaccharide	Degree of activation	TNBS	Consistency	
modification	Molecular size distribution	HP-GPC	Consistency	

Control of the carrier protein Specifications Summary

Process step	"Component"	Assay	Specification	
Fermentation	Seedlot system	х	Consistency	
	Culture media	X	Free from substances likely to cause toxic or allergic reactions in humans	
	Harvest	pH, OD, Protein	Consistency	
	Contamination	Gram-smear	Pure	
Protein purification	Purity	LF test, HPLC or SDS-PAGE	D&T-toxoid: >1500 LF/mg protein N CRM197: >90% Outer-membrane complex of MengB: <8% lipopolysaccharide/weight + rabbit test	
Protein modification	Extent of derivatization	x	Consistency	

Table A2

Methods currently used for conjugation of *Haemophilus influenzae* type b polysaccharide and control of conjugates^a

	Method	Procedure	Assay for conjugation
	Reductive amination	Combine carrier protein and aldehyde form of polysaccharide in presence of reducing agent	Formation of unique amino acid and gel filtration
	Reductive amination and attachment of spacer linked to active ester	Selective reducing end group activation and coupling to carrier protein through spacer	Gel filtration or SDS-PAGE
	Carbodiimide-mediated coupling	Combine reactants in presence of carbodiimide	Gel filtration
uality &	Cyanogen-bromide activation of polysaccharide	Addition of carrier protein to cyanogen-bromide- activated polysaccharide	Gel filtration and assay for bound polysaccharide
Regulat	Thioether bonding	Combine haloacyl polysaccharide with protein thiol	Formation of unique amino acid and assay for bound polysaccharide

For guidance only.

B

Control of bulk conjugate Specifications Summary

Process step	"Component"	Assay	Specification	
Polysaccharide-protein	Residual reagents	Х	Removal to be confirmed	
conjugation	Conjugation markers	PRP:Protein	consistency	
	Residual reactive functional groups	x	No residual reactive group	
	PRP content	Orcinol	X <40% free PRP	
	Conjugated and unbound PRP	Orcinol, sample pretreatment		
	Protein content	BCA	Х	
	Polysaccharide-protein ratio	To be calculated	Diphteria & tetanus toxoid: 0.3-0.6 CRM197: 0.3-0.7 OMC: 0.05-0.1	
	Molecular size distribution	HP-GPC	Consistency	
	Sterility	Bacterial & mycotic	Pass	
	Specific toxicity	guinea-pig test	Absence of specific toxicity	

Control of final product Specifications Summary

Process step	"Component"	Assay	Specification	
Polysaccharide-protein	Identity	Immunological test	PRP	
conjugation	Sterility	Bacterial & mycotic	Pass	
	PRP content	Orcinol and/or chromatographic	±20% of stated PRP content	
	Residual moisture	Karl Fisher	<2.5%	
	Pyrogen content	LAL or rabbit test	Acceptable	
	Adjuvant content	Spectroscopy	<1.25 mg aluminium or 1.3 mg calcium per s.h.d.	
	Preservative content	UV	Pass	
	General safety	General safety test	Animals should survive for at least 7 days	
	рН	pH test	Pass	
	Inspection	visual	No clumping, lack of integrity and/ or particles	

Source: SANOFI Pasteur website

The vaccine development cycle

Comment

Exploratory stage:	Pre-clinical stage:	Clinical development:	Phase II: Evaluation of	Interpreter The	6 Registration:	and submitted to the	The infectious germs	the vaccines are filled,	during all stages, from
2 to 4 years	1 to 2 years	6 to 8 years	the immune response in	clinical batches and	synthesis stage from	health authorities in	are cultured, harvested	primarily in vials and	distribution to vaccine
Identifying antigens to	Assessing antigens' safety	Testing the candidate	100 to 3,000 subjects	industrial batches	12 to 18 months	order to obtain a	and purified.	syringes and then packed.	administration to patients.
prevent or treat a disease.	in animals and selecting	vaccine in humans.	Phase III: Large-scale tests	of compliance.	All of the data that have	marketing authorization.	After formulation	When the manufacturing	
Selected candidate vaccines	the best candidate vaccine	Phase I: test of safety	of the vaccine's efficacy		been collected during		and freeze-drying	process is complete,	
will continue the process.	to continue the process.	on 10 to 100 subjects	and tolerance on 3,000 to		the preceding stages		(which stabilizes the	the cold chain must	
			40,000 subjects.		are gathered in a file		more fragile vaccines),	be constantly maintained	

 \wedge

Key factors to consider before launching vaccine production

- Cost of development
- Time for development
- Cost and difficulties of technological know how, commercial scale, consistency of production, GMP compliance
- Cost and difficulties for testing
- Technical difficulties to get appropriately characterized production strains
- IP related matters

- Cost and timeframe for non-clinical and clinical development
- Registration related issues and timelines
- Size of market for cost recovery and further profit

Fostering collaborations between DCVMN members

- Information exchange
- Support to acquire specific technologies (freeze drying, cell culture, other)
- Support to acquire testing methodologies
- Sources of strains for vaccine production
- Sources of formulated bulk ready for filling, labelling and packaging
- Sources of concentrated bulk material for formulation, filling, labelling and packaging
- Full transfer of technology from seed

Quality & Regulation Biologics

USE THE NETWORK FOR MUTUAL BENEFITS

THANK YOU

