

Staged Approvals and Release to Operations QA Approval C QA Approval C QA Approval C Approv

Met Accept Criteria
 Deviations
 QA Approval
 File Records & Data
 Create "Packages" of Qualification information per system or equipment.

SWA – 040 Ver DCVMN

QA Approval 🗹

Resolve Deviations

СВЕ

13

Key Principles: FDA and PICs/EU (URS/DQ/FAT/SAT/FS/DS)

- Basis is process validation and understanding of the process.
- It is essential that activities and studies resulting in process understanding be documented.
- Documentation should reflect the basis for decisions made about the process
- This information is useful during the process qualification and continued process verification stages.
- Extensive guidance on what is required for equipment / services
- The specification for equipment, facilities, utilities or systems should be defined in a URS and/or a functional specification.
- The essential elements of quality need to be built in at this stage and any GMP risks mitigated to an acceptable level.
- The URS should be a point of reference throughout the validation life cycle.

23

- In most cases, the PPQ study needs to be completed successfully before commercial distribution.
- In special situations, the PPQ protocol can be designed to release a PPQ batch for distribution before complete execution of the protocol steps and activities, i.e., concurrent release.
- FDA expects that concurrent release will be used rarely.

SWA - 040 Ver DCVMN

 Concurrent validation carried out in exceptional circumstances, justified on the basis of significant patient benefit, where the validation protocol is executed concurrently with commercialisation of the validation batches.

26

Key Principles FDA and PICs/EU (Number of PPQ Batches)

- The commercial manufacturing process and routine procedures must be followed during PPQ protocol execution.
- The PPQ lots should be manufactured under normal conditions by the personnel routinely expected to perform each step of each unit operation in the process.
- There is no mention if a specific number of batches – the manufacturer must justify their decision.
- The number of batches manufactured and the number of samples taken should be based on QRM principles, allow the normal range of variation and trends to be established and provide sufficient data for evaluation.
- Each manufacturer must determine and justify the number of batches necessary to demonstrate a high level of assurance that the process is capable of consistently delivering quality product.
 - Generally acceptable for a minimum 3 consecutive batches.

27

circumstances, within standard operating procedures, which pose the

SWA – 040 Ver DCVMN

30

Risk and Impact Assessment in Validation – cGMP Requirements

The PICs cGMP Annex 15 specifically states the following:

It is a requirement of GMP that manufacturers identify what validation work is needed to prove control of the critical aspects of their particular operations. Significant changes to the facilities, the equipment and the processes, which may affect the quality of the product, should be validated.

A risk assessment approach should be used to determine the scope and extent of validation.

EU cGMP Annex 15: A quality risk management approach should be applied throughout the lifecycle of a medicinal product. As part of a quality risk management system, decisions on the scope and extent of qualification and validation should be based on a justified and **documented risk assessment of the facilities, equipment, utilities** and **processes.**

Risk and Impact Assessment in Validation – cGMP Requirements

- "A quality risk management approach should be used for qualification and validation activities. In light of increased knowledge and understanding from any changes during the project phase or during commercial production, the risk assessments should be repeated, as required."
- "The way in which risk assessments are used to support qualification and validation activities should be clearly documented." (in a VMP)
- PICs Re-Qualification: "Where re-qualification is necessary and performed at a specific time period, the period should be justified and the criteria for evaluation defined. Furthermore, the possibility of small changes over time should be assessed."

ГВ

33

Equipment	t Complexity A	Assessment
Complex	Novel	Simple
• Complex equates to novel or multi- module equipment where there is a need for integrated components to work synchronously e.g. a freeze dryer or filling machine	 A novel item is one that is custom built for the process step it may be either complex or simple, but is generally classified as complex. 	 Equates to equipment that has only one module or unit e.g. a filter press, a mixing tank or an incubation room. These items are often purchased "off the shelf" are stand alone and not integrated
SWA – 040 Ver DCVMN		Centre la Reglamateriad Ecolore 35

Item	Name: Liquid Mixing Tank Equipment #: 123					1
Part	of Process Line: Liquids Bulk Manufacture Location/Room:					
GxPs	s taken into account; X GMP	Other				1
Bulk read	Mixing of non- sterile liquids. There is a HMI controller for the tank out/printout of critical process conditions (time and temperature)	which provic	les			
	Example					1
	Complete the checklist questions below by ticking each line answer is Yes but only related to a component of the item tic the Component box.	. If the k Yes and	Component	Yes	No	
1	Is the item, or components in direct contact with the product or au solutions during production or during monitoring ?	uxiliary		~		İ.
2	Item provides an excipient or process ingredient ?				r	
3	Does the item (or a component) produce data which impacts in p final product release ?	rocess or		~		
4	Does the item wholly or partly independently decide on the furthe processing of products ?	r			~	
5	Does the item (or a component) monitor a CPP or WPP control s no independent verification ?	ystem with		~		
6	Item preserves product quality e.g. vent filter, HVAC, Gas etc ?		~	r		
7	Failure or alarm has direct effect on product quality or impacts a	CPP/WPP ?		~		
8	Does the item directly or indirectly control/monitor prescribed env conditions of products ?	ironmental			r	
SWA – 0	040 Ver DCVMN		Centre for Biogharm	3E acculical Excellence		3

DIRECT IMPACT	If the answer to any <u>one</u> of the above is Yes then the item is Direct Impact.
INDIRECT IMPACT	If the answer to any <u>one</u> of the above is Yes but relates to a component only then the item is Indirect Impact.
NO IMPACT	If the answer to all of the above is No then the item has no (GxP) impact. This conclusion does not imply that it does not have GEP significance.
	Complexity Assessment
COMPLEX	Complex equates to novel or multi-module equipment where there is a need for integrated components to work synchronously e.g. a freeze dryer or filling machine.
NOVEL	A Nove l item is one that is custom built for the process step – it may be either complex or simple, but is generally classified as complex.
SIMPLE	Simple equates to equipment that has only one module or unit e.g. a filter press, a mixing tank or an incubation room. These items are often purchased "off the shelf" are stand along out and not integrated

Risk and Impact Assessment in Equipment Qualification

Criticality of System	Complexity of System	URS/ FAT / SAT Required	IQ/OQ Required	PQ Required
Direct Impact	Simple	URS Only	IQ and OQ required (or combined IQ/OQ)	Yes
	Complex or Novel	Yes	IQ and OQ required	Yes
Indirect Impact	Simple	No	Commissioning plus Calibration	No
	Complex	Maybe	Commission + IOQ for critical components	No
No Impact	Simple	No	Commission Only	No
	Complex	No	Commission Only	No

EXAMPLE ONLY

	Impact Assessment Example						
Unit Op #	Process Line	Equipment Description	Equip Impact	Complexity	Risk Class	Controller	
EC	Capsule 1	Capsule filling machine	Direct	Complex	High	Yes / HMI	
EC	Capsule 1	Capsule Polisher/ metal detector	Indirect	Simple	Medium	Yes/HMI	
Compress Air	Instrument air	Air compressor	Indirect	Simple	Low	No	
DRY	Dryer	Rotary vacuum drier	Direct	Simple	Medium	No	
DRY	Dryer	Mill cum sifter (Sieve)	Direct	Simple	Medium	No	
TAB	Micronization equipment	Micronization equipment line	Direct	Simple	Medium	Yes/HMI	
SWA - 040) Ver DCVMN				Contro for Biopharmaceut	ear Excellence 39	

Flash Quiz Impact Assessment Example						
Process Line	Equipment Description	Equip Impact	Complexity	Risk Class	Qualification Activity ?	
EMS	EMS	Direct	Simple / HMI		combined IQ/OQ + PQ	
General	Movable lifter	No Impact	Simple		Commission	
Film coating	Film Coat Machine	Direct	Simple		combined IQ/OQ + PQ	
Fluid bed dryer	Mill & Sieve	Direct	Simple		combined IQ/OQ	
Fluid Bed Dryer	Fluid bed dryer	Direct	Complex		URS/DQ/FAT/SAT IQ + OQ + PQ	
Powder Mill (Coarse)	Powder mill machine	Direct	Simple		combined IQ/OQ + PQ	
Plant Steam	Boiler	No Impact	Simple		Commission	
SWA – 040 Ver D	CVMN			Contre	for Biopharmateurital Ecolorece 40	

FDA Process Validation Guidance Three Stages of Validation Described

Inputs Critical Proces Parameters (Factors)	s	Process Step		Outputs - Critical Quality Attributes (Variables)
 Raw Materials Grade Sieve Diameter Crystal dispersion 	\Rightarrow	Dispensing / Sieving	\Rightarrow	 Particle size distribution Bulk Density
 Blend speed Feed rate Volume fluid 	\Rightarrow	Granulation	\Rightarrow	 LOD Granule uniformity
 Air Temperature Product temperature 		Fluidized Bed Dryer	\Rightarrow	 Particle size LOD
 Blender Dimension Speed, load, time 	\Rightarrow	Blending	\Rightarrow	 Blend uniformity Flow properties
 Press speed Compression force 	\Rightarrow	Tabletting	\Rightarrow	 Weight control Disintegration/ Hardness etc.
 Exhaust Air Humidity Spray rate 	\Rightarrow	Coating		 Dissolution rate Thickness
 Line speed Printed matter 	\Rightarrow	Packaging		→ Seal integrity → Identity

End Stage 1 Document a "Control Plan" **Example Process Step: Ultra - Centrifugation** PCP Clas Process Control (PCP) Factor CQA Class Trending / Monitoring Step # Attributes of Input Materials Spec Ref. Process Validation Sub-proces CQA Procedure Control Zonal Ultracentrifugation / Zo 6 Zonal Flow rate 300-350 с IPQC Yes mL/min (1.12 -1.25) Volume processed per centrifuge ≤ 148L Fraction pH **SOP - xxx** Operation of Continuous Flow Ultracentrifuges QC 013 с с Yes (6.8 - 7.2)PVP – xxxx Protein Conten Top product QC с Yes к emperature 5 - 27°C 104 1.0 – 2.5mg/mL PV R - xxxx Product MBR- xxx Zonal Processing in Centrifuge 6.3 Bottom product (waste) temperature 0 - 27°C Fraction Purity < 0.5% impurity QC 105 Centrifugation ο С Rapid Acceleration at 3,000 rpm, then set to 39.5 - 40.5K rpm С Maximum run time 10 hours from gradient loading к 15 x ~100mL Fractio collected (taken first) 1 x ~1500mL (waste) 0 MBR- xxx Fraction Collection Fraction Collection 6.4 PVP - xxxX Flow rate controlled SOP- xxx Fraction Collection during fraction collection at 150mL /min С PV R - xxxx SWA - 040 Ver DCVMN LBE 51

Content of Process Validation Protocols

- Short description of process e.g. flowchart Master Batch record
- Responsibilities for execution and review
- Summary of the critical processing steps (Unit Operations) to be validated
- Details of the equipment/facilities and their calibration status
- Parameters to be monitored (the CPPs)
- CQAs to be tested (with sampling plans)
- Reference to the specific test methods
- Proposed in-process controls and acceptance criteria
- Method for recording and evaluating results including statistical analysis, where applicable

СВ

55

Proposed timetable for the replicate batches

		ocess ivia	ap Exam	ple
Process Step	Process Parameters (CPPs bolded)	Parameter Range	CQA	CQA Range
4. Final Bulk Mb	ding			1
WPP	Temperature °C	<40oC	Uniformity (T/M/B)	<3.0%rsd
WPP	Stir Time (min)	10 - 15min	S.G @20oC (TMB)	All within limits
	Stir Rate (rpm)	50 - 60rpm	Appearance	All within limits
WPP	Mixing Volume (Tank	500 - 2000L	Bioburden	<10cfu/10mL
5. Wash and Dry	Bottles		·	•
WPP	Wash Speed (bottles/min	70 – 120 bottles / min	Bottles clean / dry	AQL < 1.0%
	Tunnel Pre-Heat Zone Temp	60 - 120 °C		
CPP	Tunnel Heat Zone Temp °C	100 - 150°C	Particle free	AQL < 1.0%
	Tunnel Cooling Zone Temp	30 - 40 °C		
WPP	Tunnel belt speed	Fixed speed	No defects, chips, cracks etc.	AQL < 0.5%
6. Hold Bulk Mix	(Worst Case Condition)		erdene etc.	1
WPP	Hold time	Max 24 hours	Bioburden @24 hr	<10cfu/10mL
CPP	Re-stir Time	As per step 4	Uniformity (T/M/B)	<3.0%rsd
			S.G @20oC (TMB)	All within limits
			Appearance	All within limits

What is	an Ap	propria	te Sa	mple	?
Consider Location & Freque Sample size (n) Sampling Method Whether Attributed Variable data Who is sampling	iency d e or ?	For Attributes Sampling n = log (1- c) / log (1 - p) n = sample size c = confidence level (90,95,99 p = tolerable defect level (AQL			ampling g (1 - p) (90,95,99%) evel (AQL%)
				T	
Process Failure	Num	nerical Ranking		RPN	Risk
Unit Mode(s) Operation	Frequency	Detection	Severity		(Reliability) (1- p)
CQA Defect	1	5	5	25	High 0.1 – 1.0%
	2	3	3	18	Medium (1.0 -2.5%)
	1	3	2	G	Low 2.5% - 4%

Stage # 3 – Continued Process Verification (CPV) Program

Continued process verification is the ongoing monitoring of the validated state of a process, usually through tools such as:

- Statistical analysis of batch data (CPPs and CQAs)
- Deviations;
- Confirmed OOS;
- Customer complaint profiles;
- Yields
- It is a cumulative process across multiple batches, which can extend into the PQR.

60

Absorbance Finished Product Limit: <0.15 Abs@403nm

9/01/17

RF Meeun	ng #9 - 12 July 2012		Review Period: 16 Nov	ember 2011 to 15 June	2012		
able 1	Purity (PU)						
U_04_02	Endotoxin (LAL) - DVB						
reen Flag	Baseline – APQR 2011 (to	15 Feb 2012)	Previous Month (to 15	May 2012)	Current Month (to 1	5 Jun 2012)	TRF Actions/Outcomes
	UN- QANET Enk 	All (CL) (CL) (CL) (CL) (CL) (CL) (CL) (CL)					
	# Data Points	Statistically In-control	# Data Points	Statistically In-control	# Data Points	Statistically In-control	
	n = 102	Not relevant	n = 72	Not relevant	n = 72	Not relevant	1
	with the DVB endotoxin (L 10.00 EU/mL and specific: 45.00 EU/mL. Data is not normally distrit SPC analysis. No action v batches. The data was as SH 2011 and NH 2012 (cu within season trends were	ALL) alert requirement of ≤ ation requirement of ≤ suted and not amenable to warranted on identified sessed across NH 2011, irrent). No between or identified.	Trend and commentary no	ited.	The new sear (EBUIG BILLE)	un renew period.	
U_05	Endotoxin per Haema	gglutinin					
J_05_01	MPH						
mber Flag	Baseline – APQR 2011 (to	15 Feb 2012)	Previous Month (to 15	May 2012)	Current Month (to 15	5 Jun 2012)	TRF Actions/Outcomes
	107 - QAC135 Balanada y 108	er Kennegdutein (KU/incg) Ar sin interations	Not trended		M0%-GA0039 Ender		
	# Data Points	Statistically In-control	# Data Points	Statistically In-control	# Data Points	. tvm: Statistically In-control	
	# Data Points n = 202	Statistically In-control Not relevant	# Data Points N/A	Statistically In-control	# Data Points n = 42	Statistically In-control Not relevant	

Example Validation of Viral Vaccine Inactivation

When is inactivation done?

- Inactivation is initiated as soon as possible after harvesting of cells. (EP)
- Immediately after clarification or purification
- Must be done for each virus strain and any change of strain

Substances are used as inactivating agents?

- if formaldehyde solution is used, the concentration does not exceed 0.2 g/l of CH2O at any time during inactivation;
- if beta-Propiolactone (BPL) is used, the concentration does not exceed 0.1% V/V at any time during inactivation

Inactivation conditions:

Mixing rate and duration, inactivation temperature and storage conditions.

defined as a total period equal to three times the interval required for interception of the baseline (χ) which would, in

this example, correspond to an incubation time of 9 days: source www.springer.com/cda/content/document/cda.../9783662450239-c2.pdf?SGWID...

Approximate membrane

cutoff range

10 kD - 300 kD

1 kD - 1000 kD

< 1 kD

0.05 µm - 1 µm 100 kD - 0.05 µm

79

WHO GMPs for Biologicals Section 15 Validation

- A QRM approach should be used to determine the scope and extent of validation.
- All critical biological processes (e.g. inoculation, multiplication, fermentation, cell disruption, inactivation, purification, virus removal, removal of toxic and harmful additives, filtration, formulation, aseptic filling, etc.), as applicable, are subject to process validation.
- Manufacturing control parameters to be validated may include specific addition sequences, mixing speeds, time and temperature controls, limits of light exposure, and containment.

81

WHO GMPs for Biologicals Section 15 Re - Validation

- Process revalidation may be triggered by a process change, as part of the change control system. In addition, because of the variability of processes, products and methods, process revalidation may be conducted at predetermined regular intervals according to risk considerations.
- A detailed review of all changes, trends and deviations occurring within a defined time period (e.g. 1 year, based on the regular Product Quality Review) may require process revalidation.

Elements of Aseptic Process Validation (FDA Guidance – 2004)

- Media Fill Conditions / worst case situation / What are the risk factors ?
- Frequency and Number of Runs
- Duration of Run
- Size of Run
- Line Speed
- Environmental Conditions
- Media
- Incubation and Examination of Media-Filled Units
- Interpretation of Results

SWA – 040 Ver DCVMN

Risk Rating Interventions -Considerations

Necre Fitts

Rating	Intervention Activity	Potential Contamination Risk	Frequency of inclusion in Media Fill	Glove monitoring required post any intervention
5	Critical surface	Very High	Every fill	Yes
4	Proximal to an open container	High	Every fill	Yes
3	Remote to open container	Medium	Once per year	No
2	Outside Inner Grade A area	Low	Once per year	No
1	Grade B Area Activity	Very Low	Once per two years	No

