

Useful Regulatory References for Test Methods and Assay Calculation Examples

- WHO Manual Lab. Methods for Testing Vaccines WHO/ VSQ/97.04
- USP <111> Design and Analysis of Biological Assays
- USP <1033> Biological Assay Validation
- USP <1034> Analysis of Biological Assays
- European Pharmacopoeia Section VIII.13 Statistical Analysis of Results of Biological Assays and Tests.
- British Pharmacopoeia (BP) 1993 Appendix XIV Biological Assays and Tests
- Test Methods included in USP/BP/EP/WHO and US FDA 600 series
- EDQM PLA Database for standardized calculation of parallel line assays

Све

© CBE Pty Ltd

Analytical	Category I	Categ	jory II	Category III	Category IV	
Parameter	Active	Impurit Degradatio	ies and n Products	Performance	Identificatior	
		Quantitative	Limit Tests	Dissolution etc		
Precision	Yes	Yes		Yes		
Accuracy	Yes	Yes	*	*		
Detection Limit			Yes	*		
Quantitation Limit		Yes		*		
Specificity / Selectivity	Yes	Yes	Yes	Yes	Yes	
Range	Yes	Yes	*	*		
Linearity	Yes	Yes		*		
Ruggedness	Yes	Yes	Yes	Yes		
* Maybe req	uired dependii	ng on nature o	of specific test	t		

Analytical Method Validation – WHO Draft

Type of analytical procedure	Identification	Testing for impurities	Testing for impurities	Assay — dissolution (measurement only) — content/potency
Characteristics		Quantitative tests	Limit tests	
Accuracy	-	+	_	+
Precision				
Repeatability	-	+	-	+
Intermediate	-	+	-	+
precisionª				
Specificity	+	+	+	+
Detection limit	_	_ь	+	-
Quantitation limit	_	+	_	-
Linearity	_	+	_	+
Range	_	+	-	+

СВЕ

© CBE Pty Ltd

Bio-Assay Variability – Lack of Ruggedness (Variation Sources)

- In-vivo tests subject to animal variability: sex, health, weight, season
- Lots under test often biologically produced and variable
- Preparations can become unstable on the bench
- Analyst technique plays a part in control of variation
- Tests use multiple reagents, different cell/ tissue lots, variable biological and "living" cultures/animal models etc.
- "Inter-Lot" variation is a major influence on assay Precision and sometimes accuracy.
 - Often forced to use different Lots of Reagents
 - Try to minimise Lot to Lot changes if possible
- Assay variation (lack of robustness) due to multiple factors plus the sample matrix (plasma, tissue etc.)

Све

The dose response is not linear in many cases

© CBE Pty Ltd

Recommended Specifications (ICH Q6B plus and specific monographs) Product **Bulk Substance** Identity Identity Appearance and description Appearance and description Purity and impurities Purity and impurities • Process related Product related Process related Potency Product related Quality (% protein in product) Potency Sterility Sterility (or bulk bioburden) Endotoxin **.** Container / closure integrity** Endotoxin Preservative content . Toxicity 100% physical inspection container Protein Content Mass Content(weight/ volume) General tests. pH, osmolarity, specific gravity ** in development only Све © CBE Pty Ltd 12

	Flash Quiz	S
	Biological Assays	Your Selection
1	 Which one of these statements is true (a) Biological assays (bioassays) are less robust than equivalent chromatographic methods. (b) In-vivo assays are higher cost, but more reliable than in-vitro tests (c) ELIZA tests are high cost and high variability (d) In-vivo assays should be repeated 3 times 	
2	 Which of these can contribute to bioassay variability (there may be more than one) (a) Analyst to Analyst (b) Change of reagent lot numbers (c) Change of animal (change of sex or weight range) (d) Change of suppliers test kits 	
3	We are expected to validate bioassays before use	TRUE/FALSE
4	We are not required to validate a bioassay if we use a control sample in the test	TRUE/FALSE
© (CBE Pty Ltd	

Binomial/Quantal (Pass/Fail) Tests Binomial tests are common in biological systems e.g determine the LD₅₀ of a substance or use in Quantal assays Convert % responders to a 'Probit' value from Tables This normalises the data so straight lines can be drawn Can directly compare test and standard response curves Can compute the relative potency (M) and Confidence Interval Example use is in Insulin assays - response is % mice that are hypoglycemic or convulse in 90 minutes when dosed with drug - use a 3 dose interval. Table 3.2 Transformation of percentages to probits % 0 1 2 3 4 5 6 7 8 9 95 3.59 4.08 4.42 4.69 4.95 5.20 5.47 5.77 6.18 7.05 2.67 3.77 4.19 4.50 4.77 5.03 5.28 5.55 5.88 6.34 2.95 3.82 4.23 4.53 4.80 5.05 5.31 5.58 5.92 6.41 3.12 3.87 4.20 4.50 4.82 5.08 5.33 5.61 5.95 6.48 3.253.924.294.594.855.105.365.645.996.553.363.964.334.614.875.135.395.676.046.64 $\begin{array}{c} 3.45 \\ 4.01 \\ 4.36 \\ 4.64 \\ 4.90 \\ 5.15 \\ 5.41 \\ 5.71 \\ 6.08 \\ 6.75 \end{array}$ 3.524.054.394.674.925.185.445.746.136.883.66 4.12 4.45 4.72 4.97 5.23 5.50 5.81 6.23 7.33 0 10 20 30 40 50 60 70 80 90 3.72 4.16 4.48 4.75 5.00 5.25 5.52 5.84 6.28 0.1 7.37 0.2 7.41 0.5 7.58 0.6 7.65 0.7 0.8 7.75 7.88 0.0 - 7.33 0.3 7.46 0.4 7.51 0.9 8.09 99 0.22 0. 0.35 © CBE Pty Ltd

Treatment of Data in Bioassays The USP States:

- "For biological assays having a high variability, an outlier test may be an appropriate statistical analysis to identify those results that are statistically extreme observations."
- The USP describes outlier tests in the general chapter on Design and Analysis of Biological Assays <111>.
- The USP also states that "arbitrary rejection or retention of an apparently aberrant response can be a serious source of bias... the rejection of observations solely on the basis of their relative magnitudes is a procedure to be used sparingly" (USP <111>)."
- "Occasionally, an outlier test may be of some value in estimating the probability that the OOS result is discordant from a data set, and this information can be used in an auxiliary fashion, along with all other data from the investigation, to evaluate the significance of the result."

Све

29

© CBE Pty Ltd

How do I Independen	average t Biologi	(comb cal As	ine) says ?
1. Unweighted Geometric Mean	2. W	eighted Geom	etric Mean
Potency Log Potency 1. 80 units 1.90308 2. 120 units 2.07918 Av. log potency (M) = 3.98226/2 = 1.99113 antilog (M) = 97.97 units	Potency 1. 80 units 2. 120 units Log Potency (M)	Log Potency (R) 1.90308 2.07918 = $\sum (R * W)$ $\sum (W)$ = $\frac{190.3 + 1039.5'}{600}$ = 2.0498	Weight (W) 100 500
© CBE Pty Ltd	Potency = antilog	(M) = 112.2 unit	S

	Flash Quiz	Ø
	Biological Assays	Your Selection
1	 Which of these one statements is true: a) Bioassays are best conducted by one expert technician b) The robustness of bioassays should always be independent of the analyst technique c) Bioassays should only be "read" or assessed by one technician to reduce bias d) The reliability of bioassays generally rely upon a high level of technician training 	
2	 Which one of the following is generally considered the least reliable biological assay a) Animal (in vivo) model b) Laboratory (in vitro) model c) ELIZA (enzymatic) laboratory test d) Identity test 	
3	Bioassay monographs allow the application of the outliers test to remove data points	TRUE/FALSE
4	The monographs for bioassays specifically preclude the use of outliers tests as they introduce bias into the method.	TRUE/FALSE

Tests for Biological Assay Validity

For a biological test to be "valid" it must:

- exhibit significant regression (slope) sensitivity and precision
- the slopes of the standard/unknown must be "parallel" selective
- the responses must be linear with respect to dose ie not curved linearity, accuracy and range
- the random error (residual) must be more significant than the error associated with dose level or treatment - precision

These statistical tests should be assessed during validation of the method and applied to each assay performed to confirm validity - this approach is part of a combined strategy of **validation** and **verification** or control.

Example (3 x 3 x 3) assay.	Source of Variation	Degrees of Freedom	Sum of Squares	Mean Squares	F	Р
	Preparations	2	176.26	88.13		
Randomised Block	Regression	1	30976.0	30976	25770	<0.01
Design	Parallelism	2	7.17	3.59	2.99	>0.05
Analysis of Validity of the Assay**	Quadratic	1	2.37	2.37	1.97	>0.05
 significant regression (p < 0.01) no significant departure from 	Difference of Quadratic	2	1.91	0.96	0.8	>0.05
parallelism (p> 0.05)	Treatments	8	31163.5	3895.5		
 no significant departure - non opposed curvature (p>0.05) 	Blocks	5	127.4	25.48	21.2	<0.01
 no significant departure - opposed curvature (p>0.05) 	Say. Variation Degrees Saures Squares Yariation of Freedom Squares Squares Preparations 2 176.26 88.13 ised Block Regression 1 30976.0 30976 25 Sign Parallelism 2 7.17 3.59 2 y of the Assay** Quadratic 1 2.37 1. sion (p < 0.01)					
	Total	53	31339.2			

	Flash Quiz	Ø
	Biological Assays	Your Selection
1	 Regarding the validation of biological test methods which ONE statement is most TRUE a) Companies should strictly follow USP <1225> requirements b) Companies should strictly follow ICH Q2 requirements c) Bioassays do not need to be validated as they have in-built controls d) Validation of biological assays requires assessment of the consistency of the dose response curve 	
2	 Choose the one True statement from the following: a) If a biological assay fails by junior analyst (A) due to not meeting acceptance criteria but passes by senior analyst (B) the reason must be analyst error or training b) When conducting repeat testing overwhelm the OOS result i.e. conduct 5 repeats and average all results including the original OOS c) If a biological assay fails, but also fails the test acceptance criteria i.e. %CV <20% for Endotoxin test fails, then it is not an OOS but an invalid test d) Using the Dixons outlier test is the 1st step in investigating a biological OOS 	
3	Generally at least 2 replicate bioassays are conducted	TRUE/FALSE
© (CBE Pty Ltd	SIE 41

		Alternative Tes	t Method		_				
Conventional test method	Name & Description	Validation Status	Regulatory Status	Effect or Potential Effect on Animal Use	Last Reviewed	Switch from In-			
Lethal/paralytic challenge test in the batch potency testing of telanus toxold vaccines for human use (Methods A and B in PhEur 2.7.8)	ELISA procedure for Batch Potency Testing of Tetanus Vaccines Description and references	EU: Endorsed as valid by ECVAM (2000)	EU: Accepted into PhEur (Method C, 2.7.8) (2003)	Reduction (single- dilution test instead of multi-dilution) Refinement (Does not rely on death as an endpoint)	May 2012	Alternative Test Methods			
	Toxin Binding Inhibition (ToBI) Test for Batch Potency Testing of Tetanus Vaccines Description and references	EU: Endorsed as valid by ECVAM (2000)	EU: Accepted into PhEur (Method C, 2.7.8) (2003) US: 21 CFR 610.10	Reduction (single- dilution test instead of multi-dilution) Refinement (Does not rely on death as an endpoint)	May 2012	 Alternative Tests must be validated 			
Lethal/Intradermal Challenge Test In the Batch Potency Testing of Diphtheria Vaccine (Methods A and B in PhEur	ELISA Procedure for Potency testing of Diphtheria Vaccines Description and references	No information	EU: Accepted into PhEur	Reduction Refinement	May 2012	Cell based or ELIZA tests			
2.7.6)	Vero Cell Assay for Potency testing of Diphtheria Vaccines Description and references	EU: Norwegian Medicines Agency presently conducting validation	EU: Accepted into PhEur	Reduction Refinement	May 2012	 Some referenced in EP and US CFR610 Series 			
Combination Tetanus and Diphtheria vaccines – separate serology tests for each vaccine	Tetanus and Diphtheria Serology test – single test for combination vaccine Description and references	No information	EU: Accepted into PhEur	Reduction	May 2012	 Must refer to National Regulatory Authority (NRA) 			
Potency Test of Hepatitis B Vaccine (Mouse)	Serological Antigen Quantification Description and	No information	EU: Accepted into PhEur (2.7.15)	Reduction Refinement	May 2012	· ·			

Example 3x3x3x3 Parallel Line Assay (Design and Raw Data) ple Assay Calculation and Constants for Parallel Line - 3X3X3X3 Assay (loge dose vs Linear Response transform) Shigh Smid Slow Chigh Cmid Clow Thigh Tmid Tlow Uhigh Umid Ulow Total Shigh Smid Slow Chigh Cmid Clow Thigh Tmid Tlow Uhigh Umid Ulow Total # Prep' s = h # Treatments = # Doses/prep'n = d Dose Interval = = Allowed entry cells = Automatic Entry cells (locked) 2.0 = Hidden Calculation Cells (locked) Assigned Potency = t (60 @0.05)= U= 2.00 C= T= 2.00 = Locked Calculation Cells Shigh Log10 transform Data Smid Chigh Cmid Clow Thigh Tmid Tlow Uhigh Umid Ulow Slow 1.1085 0.836 0.48 1.7585 1.320 .783 7485 Su Average Average square 1.2802 0.8495 0.4732 1.2652 0.7855 0.4565 1.7985 1.3385 0.8302 1.5212 1.1065 0.7338 14.803 Control Tlow= 0.4565 Tmid = 0.7855 Thigh = 1.2652 Pt= 2.5072 Lt = 0.8087 sponse Totals and Contrasts Test U Totals 0.7338 1.1065 1.5212 3.3615 112.439 0.7873 3.371 Test T 0.8302 1.3385 1.7985 3.9672 Str Low Mid High (P) (L) Std 0.4732 0.8495 1.2802 2.6028 Slow = Smid = Ulow= Umid = Clow = Cmid = Chigh = Uhigh = Pu= Shigh = Ps= Preparations Pc= 12.439 = Sum P 3.371 = Sum L 2.8627 0.9683 Linear Cor Ls 0.8070 Lu :

© CBE Pty Ltd

Centre for Bigharmaceutical Excellence

	Exa	mple	3x3>	(3x3 (AN	Para OVA)	llel Li	ne A	ssay	
Source of	of Variation	Degrees of Freedom	Sum of Squares	Mean Squares	F F ratio	P Validity Test		Hp = HL =	1.0 1.5
Р	reparations	3	1.41861	0.4729	4700.00	should be:	Limits	p = 0.05	P = 0.01
Non -	Parallelism	3	4.262	4.2622	4/89.89	<0.01	4.24	**	**
No	n- Linearity	4	0.0149	0.0037	4.18	>0.05	2.75	**	
٦	Treatments	11	5.7276					1	I
Res	idual Errors	24	0.0214	0.0009					
	Total	35	5.7490						
	** convert l go to the fo http://www	Fratio to p valu bllowing web s .graphpad.cor	ues @0.05 or (site: n/quickcalcs/i).01 level ndex.cfm					
© C	BE Pty Ltd						Centr	of or Biogharmaceutical Exosting	46

Example 3x3x3x3 Parallel Line Assay (Potency Estimates and Cls)

Iculation	1 of Potenc	y Ratio and	d Fiducual	Limits					0.69315	I = In dose	interva
	Potency (Calculations		Control		Batch T		Batch U	1.0008	C =	
Commor	n slope b =	0.6080							2.56242	2V =	
		+/- log FL		0.04580		0.05261		0.04990			
	Log	Ratio (M) =	Mt =	-0.0525	Mu =	0.7480	Mc =	0.4160			
	Pote	ncy Ratio =	Potency	0.949	Potency	2.11	Potency	1.52			
Assig	gned Potenc	cy (units) =		0.95		4.23		3.03			
%	of Assigned	Potency =		94.9%		211.3%		151.6%			
	Log Fiduc	ial Limits =	Upper	-0.0067	Upper	0.8013	Upper	0.4662			
			Lower	-0.0983	Lower	0.6960	Lower	0.3664			
Po	tency Fiduc	ial Limits =	Upper	0.99333	Upper	2.228326	Upper	1.59392			
			Lower	0.90638	Lower	2.005792	Lower	1.44254			
ency % c	of Assigned	Potency =	Upper	99%	Upper	222.8%	Upper	159.4%			
			Lower	90.6%	Lower	200.6%	Lower	144.3%			
Potency 9	% of Found	Potency =	Upper	104.7%	Upper	105.4%	Upper	105.1%			
			Lower	95.5%	Lower	94.9%	Lower	95.1%			
© C	BE Pty L	td							Centre for Biogham		4