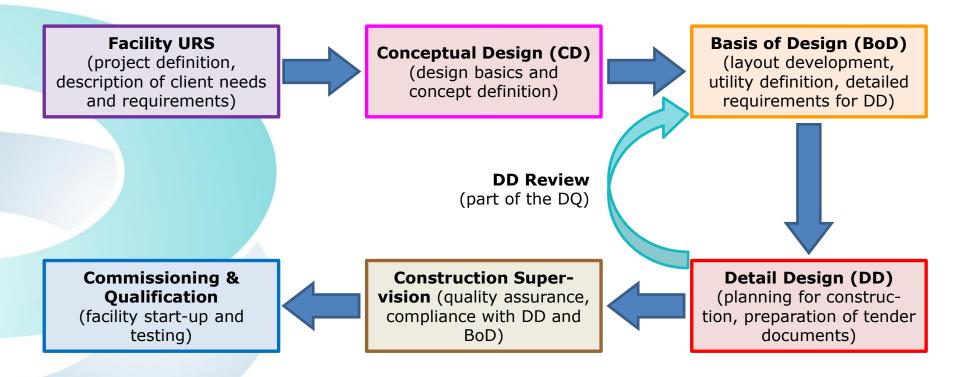


Project Setup: From the Beginning until the End

Table of Contents

Steps, structure and organization of a facility design, planning and construction project:

- Facility URS
- Conceptual Design
- Basis of Design
- Detailed Design
- Construction
- Commissioning



Relevant Guidelines

- Chinese GMP guideline (2011 edition)
- Current WHO GMP guidelines (documented in technical report series, TRS)
- WHO biosafety guidelines
- Product-specific WHO guidelines (TRS containing GMP and biosafety relevant information)
- European GMP guidelines (EudraLex, Volume 4)
- ISPE good engineering practice guidelines

Project Steps – Design & Realization

1

1.1

1.2

1.3

1.4

1.5

1.6

2

2.1

2.2

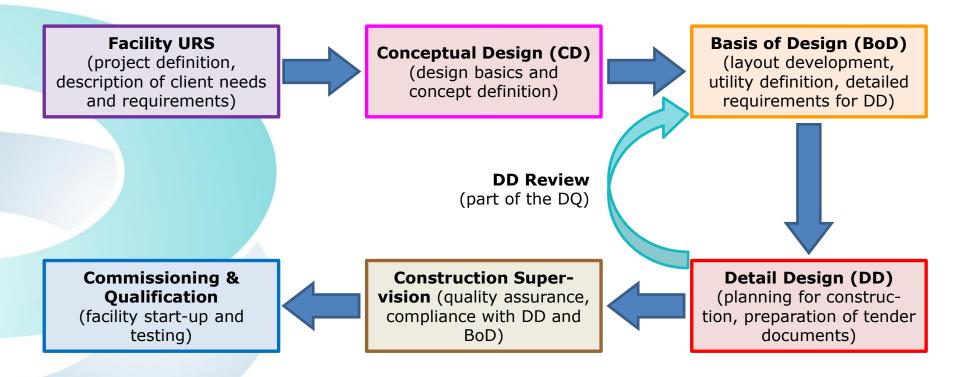
3

3.1 3.2

3.3

3.4

3.5


Basic Structure of Documents To be described in increasing detail with the progress of a project (F-URS, CD, BoD)

INTRODUCTION	4	FACILITY DESCRIPTION
Project Background	4.1	Facility Design Basics
Purpose and Objectives	4.2	Process Description
Scope	4.3	Equipment Concepts
Project Organization	4.4	Media- and Buffer Preparation
Abbreviations and Definitions	5	UTILITIES
Guidelines and Regulatory Requirements	5.1	Building Utilities (Black Utilities)
FACILITY DESIGN BASICS	5.2	Process Utilities (Clean Utilities)
GMP Basics	6	HVAC
Biosafety Basics	6.1	Clean Room Operating Parameters
BUILDING PROPERTIES	6.2	UAF / LAF Operating Parameters
Site Description	6.3	Air Filtration
Building Description	6.4	Ventilation Design Concept
Architectural Layout	6.5	Biosafety Containment Features
Building Concept	7	COMPUTERIZED SYSTEMS
Requirements for Interior Finishes	7.1	Building Automation System
	7.2	GMP Monitoring System

5

Project Steps – Design & Realization

Purpose

A "Facility User Requirement Specification" should fulfill the following purposes in a construction project:

- Summary of user requirements for the project
- Definition of basic conceptual requirements to be implemented for further planning
- Definition of the project organization and schedule
- Definition of the location (building / site) for project realization

Inputs Required from Customers (I/II)

The following basic input is required to start with the F-URS:

- Type of product and related hazards (biosafety, toxicity, virus risk, etc.)
- Manufacturing process description / flow diagram, including media / buffer demand
- Processing capacities: Batch size, batches per year, target harvest volume / yield, etc.

Inputs Required from Customers (II/II)

The following basic input is required to start with the F-URS:

- Basic equipment information: Disposable, single-use or reusable, max. working volumes, etc.
- Required / available utilities at the site / in the building
- Existing building and space available for project realization, or new building required?

Conceptual Requirements

With the basic input, the following conceptual requirements can be defined:

- Required clean room grades for processing
- Material and personnel flows: Unidirectional or bi-directional
- Segregation of process steps (different rooms)
- Segregation of HVAC systems
- Segregation of utility systems

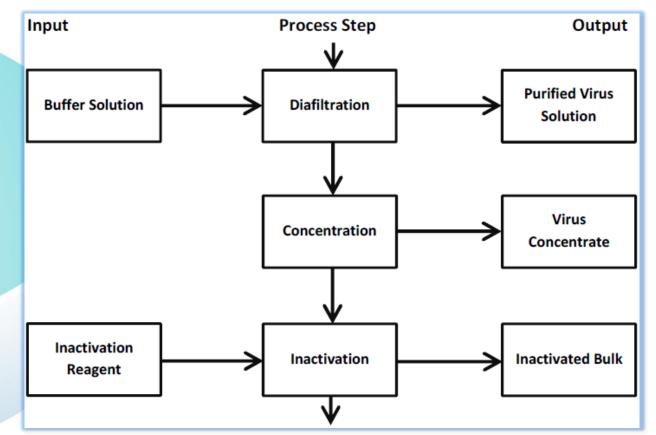
Example of Input from Customer

Schedule

原液生产周期和岗位定员: Bulk production cycle and staff number									
工序 Process	生产周期 production	岗位定员 staff							
L)+ Hocess	cycle	number							
溶液配制 solution preparation	4 天 4 days	3 人							
细胞解冻复苏 Cell thawing	1 天 1 day	2 人							
摇床种子扩增 Seed proliferation	12 Tr 12 days	2							
with Shaker	12 天 12 days	3 人							
Wave 反应器准备及接种 WAVE									
reactor preparation and	2 天 2 days	3 人							
inoculation									
Wave 反应器细胞扩增 WAVE	5 天 5 days	2 人							
reactor cell proliferation	5 /	- / \							
200L 反应器准备及接种 200L									
reactor preparation and	2 天 2 days	4 人							
inoculation									
200L 反应器种子扩增 200L	3-6 天 3-6 days	3人							
reactor seed proliferation	5-0 / 5-0 uays	5 /							
2000L 反应器准备及接种 2000L									
reactor preparation and	2 天 2 days	4 人							
inoculation									

11

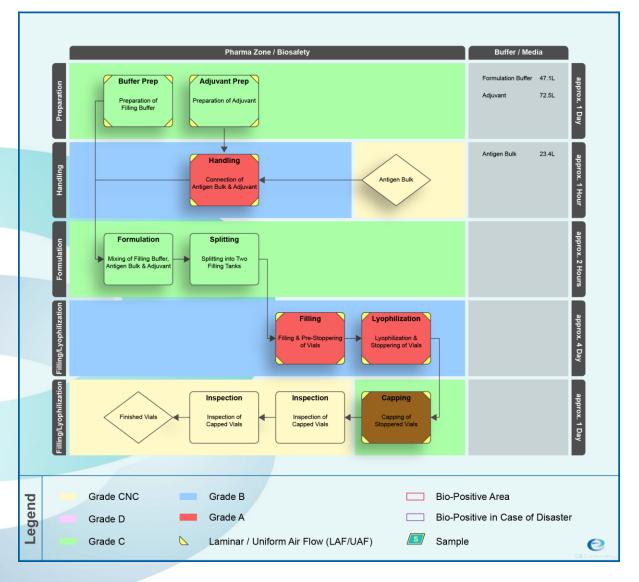
Example of Output from CBC


Schedule

	Batch No	.e									,	Neek									
	Bat	Train	1	2	3	4	5	6	7	8	9 10		40	41	42	43	44	45	46	47	48*
	1	1	Fla	isks	Wave 2	2x200L	2x2000	L													
11	2	2			Flasks	Wave	2x200L	2x2000	L												
11	3	1				Flasks	Wave	2x200L	2x20												
	4	2					Flasks		2x200L	2x20											
	5	1						Flasks		/e 2x200L	2x2000L										
	6	2						┼┼┼┼┼┼┼	Flask		/e 2x200L 2x200										
	7	1								Flash	_	┓┫┫┫									
	8 9	2									Flasks										
			┟╁┟┟┟┟┟				╏╏╏╏╏╎				Flas	KS				╏╏╏╏╏		╂┼┼┼┼╂╴			
18	 31	 1																			
11	32	2	┝╋╁┼┼┟┟																		
	33	1											2x200L	2x	2000L						
	34	2												ve 2x200	_	×2000L					
	35	1											Flas		Vave 2x20	_	2x2000L				
	36	2														Wave 2x2	00L	2x2000L			
	37*	1													F	lasks	Wave 2	x200L	2x2000	L	
	38	2																			
	39	1																			

Example of Input from Customer

Process Flow Diagram



13

Example of Output from CBC

Facility URS (project definition, description of client needs and requirements)

Process Flow Diagram

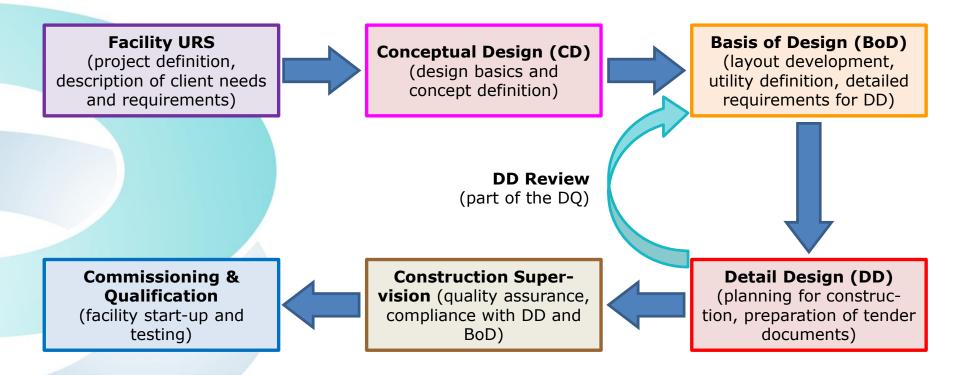
Process steps mapped against the required room grades defined in the GMP guidelines (A, B, C and D)

Clean Room Grades

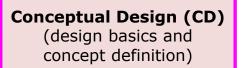
Required clean room grades (A, B, C, D) follow the GMP guidelines. The following concept applies:

- Grade D: For closed process steps (product not directly exposed to the clean room environment)
- Grade C: For open processing of unsterile intermediates (low bioburden)
- Grade A in B: For open processing under aseptic conditions (sterile products or max. contamination control)

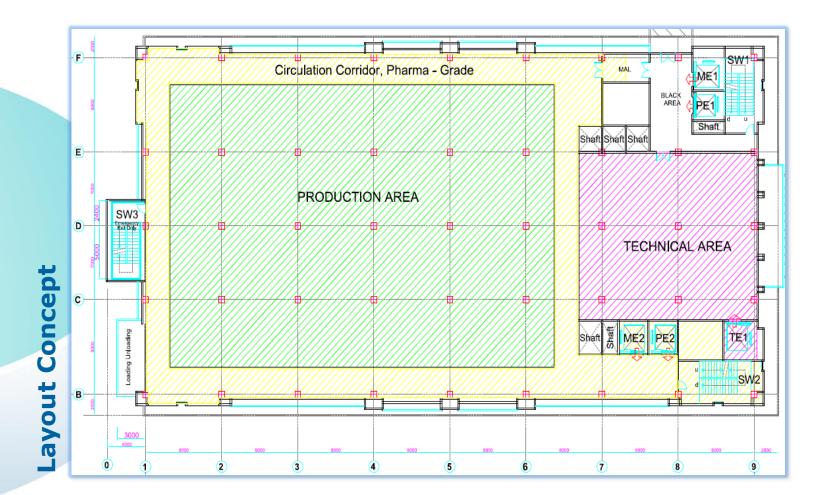
=> see e.g. the WHO guideline "environmental monitoring of clean rooms", November 2012


Associated / Supportive Area

Definition of associated / supportive areas to be included in the project:


- Cleaning and sterilization area for equipment, small lab ware, garments, etc.?
- Buffer, solution and media preparation rooms?
- Area for production of master / working seed virus or bacteria (or master / working cell bench)?
- QC labs?
- Storage capacities for product in quarantine and released product?
- Etc.

Project Steps – Design & Realization

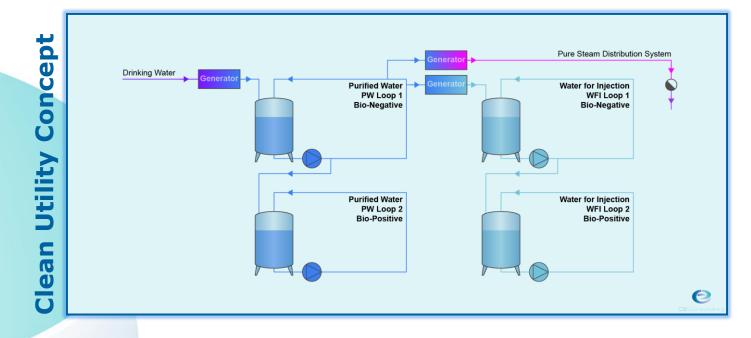

Purpose

A "Conceptual Design" document should fulfill the following purposes in a construction project:

- Definition of the building concept
- Definition of the basic facility properties and concepts (e.g. GMP, biosafety, utilities, HVAC, automation, etc.)
- Provides all concepts for further planning in basis of design (BoD) phase
- Development of basic layout

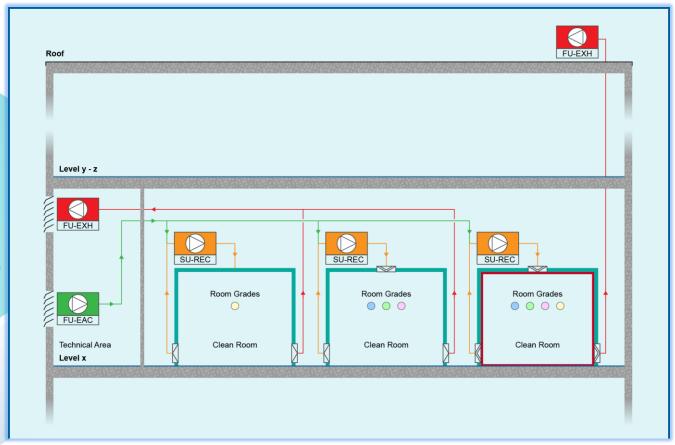
Output from CD Phase (Example) Building footprint with layout concept

Output from CD Phase (Example) Section view of building illustrating the different vertical connections within the building


ſ	Legend		Bla	ack Area	a 🗌		Phar	rma Area	MAL	Material Ai (access for		PAL	Personn (access			T	Physic (no ac	al Separation cess)
	Roof				F	aci	ility S	eparatior	n Conc	ept, New	Multipr	oduct Va	ccine B	uildin	g			
	Level 5				PAL / Tetanus Bulk Production										use only			
	Level 4						PAL/ MAL		Bulk Pro	oduction 2		FFF Li	ne 4				emergency	
	Level 3						PAL / MAL			Bulk Proc	luction 3						ng shell, for	
	Level 2	black					MAL			FFF Line	s 2 and 3						of the buildi	
1	Level 1	Elevator, TE1,		, black	olack					Packagin	g			, pharma	pharma		Stairwell, SW3, black, outside of the building shell, for emergency use only	
	Ground Floor	Fechnical Maintenance E	W1, black	Personnel Elevator, PE1,	Material Elevator, ME1, black		PAL/ MAL	FFF Li	ine 1, Bu	iffer Prepara	tion, Cold	Storage	vator, a	Personnel Elevator, PE2,	Material Elevator, ME2, p	Stairwell, SW2, pharma	irwell, SW3, b	Ground Level
	Basement	Technical M	Stairwell, SW1, black	Personnel E	Material Ele		Cold Storage E3 bpatting W W W W						Material Elevator, ME3, pharma	Personnel E	Material Ele	Stairwell, SI	Escape Stai	

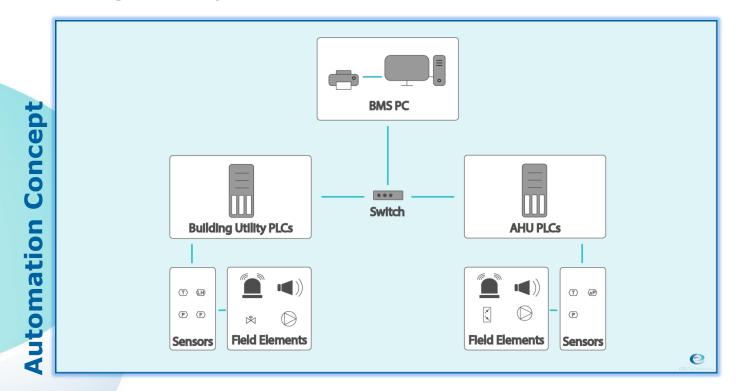
Building Concept

Output from CD Phase (Example)

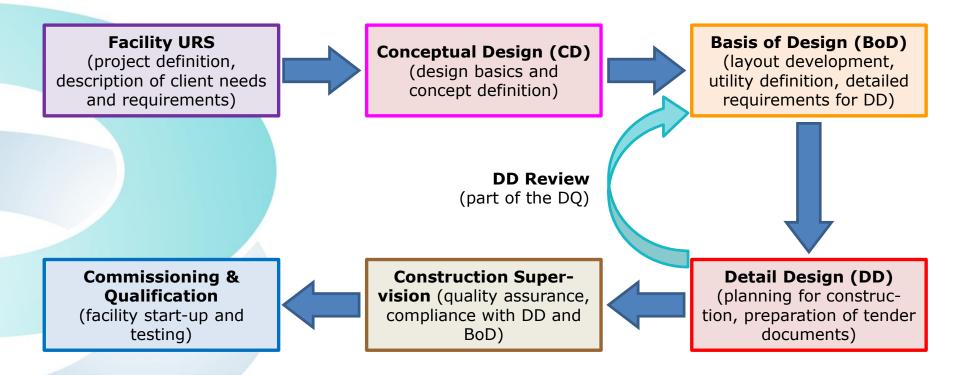

Clean utility concept showing generation and distribution of purified water, water for injection and pure steam

Output from CD Phase (Example)

HVAC concept illustrating air handling units supplying different room types.



HVAC Concept

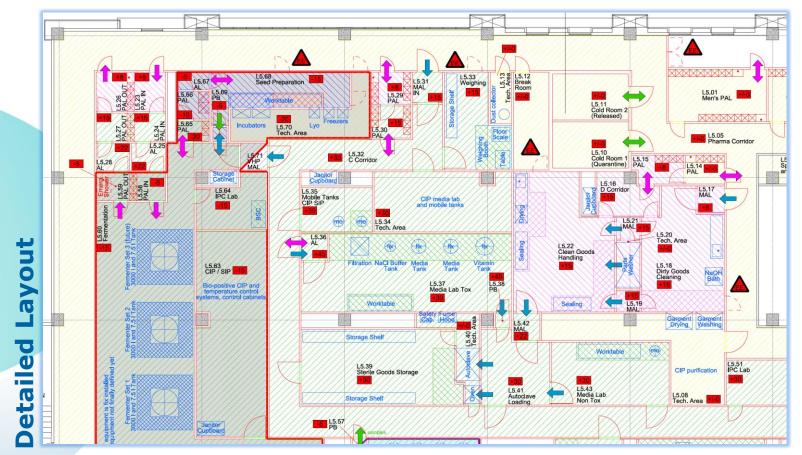

Output from CD Phase (Example)

Automation concept showing the setup of the building management system.

Project Steps – Design & Realization

Basis of Design (BoD) (layout development, utility definition, detailed requirements for DD)

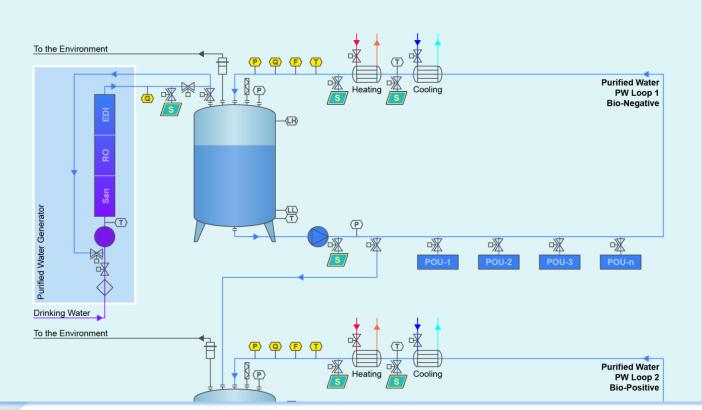
Purpose


A "Basis of Design" document should fulfill the following purposes in a construction project:

- Definition of general technical solutions incl. approximate dimensioning (e.g. utilities, HVAC, automation, etc.)
- Definition of pressure cascades & AHU areas
- Detailed material, product and personnel flow incl. gowning concept
- Detailed layouts
- Provides the basis for detail design activities

Basis of Design (BoD) (layout development, utility definition, detailed requirements for DD)

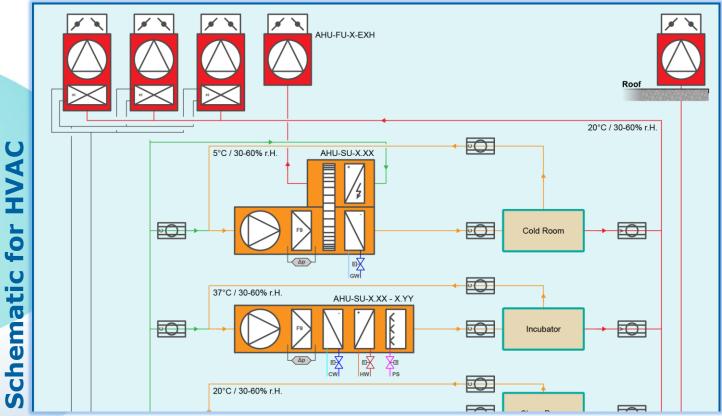
Output from BoD Phase (Example) Detailed layout showing room grades, pressure, flow & BSL border


Output from BoD Phase (Example) Gowning concept showing appropriate gowning for the different room grades.

	Room Grade	Garment	Illustration / Example
	CNC / D / C / B (Layer 1, underwear for all areas)	Socks Long underpants Sweatshirt / t-shirt	
L.	Room Grade	Garment	Illustration / Example
Gowning Concep	B (Layer 2)	Socks Long underpants Sweatshirt Safety shoes Grade B (see picture) Full-body protective overall for Grade B (see picture) Gloves (see picture) Head cover (see picture) Safety goggles (see picture) Face mask (see picture)	

Output from BoD Phase (Example) Detailed schematic for clean utilities showing POUs, sampling

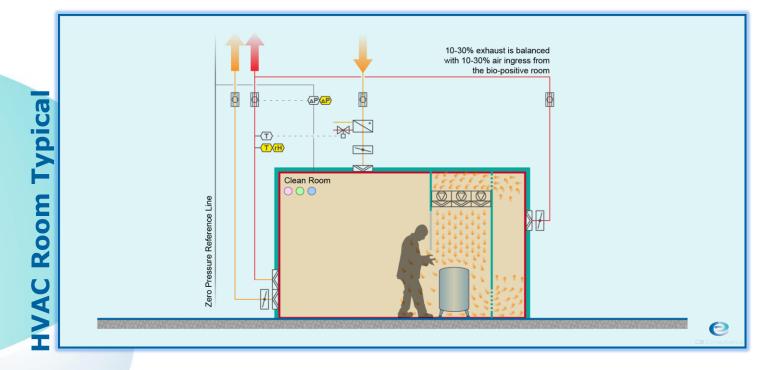
points & monitored parameters


Schematic for Purified Water

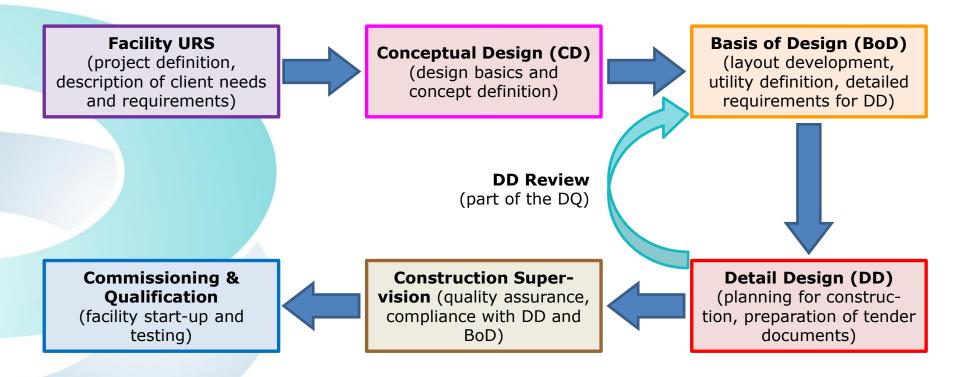
Basis of Design (BoD) (layout development, utility definition, detailed requirements for DD)

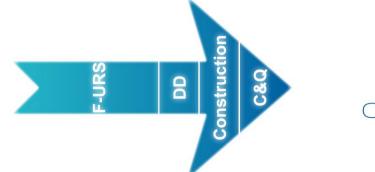
Output from BoD Phase (Example)

Detailed schematic of AHUs showing the individual components and required utilities.

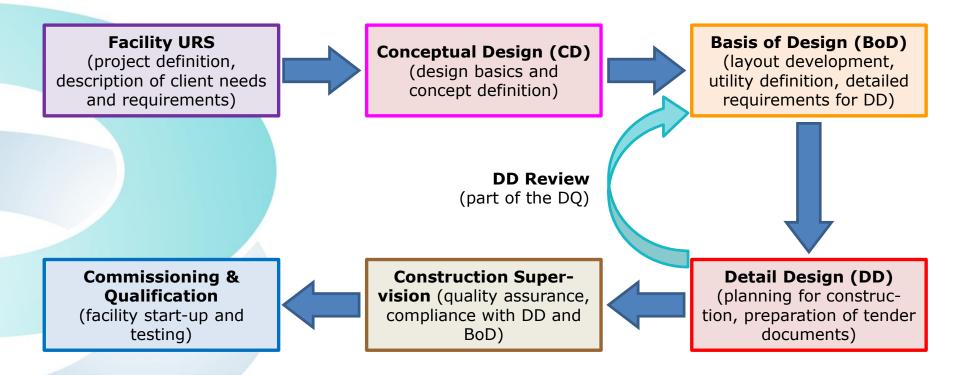


29


Basis of Design (BoD) (layout development, utility definition, detailed requirements for DD)


Output from BoD Phase (Example) HVAC room typical for a bio-positive clean room with UAF providing inward air flow.

Project Consolidation & Acceleration


Project Consolidation & Acceleration

Information from CD and BoD might be compiled in the F-URS document, providing the following advantages:

- Consideration of approved conceptional solutions in the early stage of a project (avoid re-inventing the wheel)
- Promotion of early (cheap) decisions
- Elimination of redundant information in different documents (F-URS, CD, BoD)
 - Consolidation of any important information into one document (information is easy accessible)
- Acceleration of the project
- Cost effectiveness

Project Steps – Design & Realization

Detail Design (DD) (planning for construction, preparation of tender documents)

Purpose

A "Detail Design" phase should fulfill the following purposes in a construction project:

- Elaboration of tender documentation
- Distribution of bid packages to different supplier
- Evaluation of offers
- Selection of suitable suppliers
- Detailed planning for construction

Detail Design (DD) (planning for construction, preparation of tender documents)

Output from DD Phase (I/III)

Tender Documentation:

- Is issued by the planner
- Contains the following information:
 - General project and discipline description
 - Project organization & -schedule
 - Organization of the construction site
 - General terms and conditions
 - Detailed scope of work to be offered
 - Detailed list of deliverables
- Shall be reviewed by the customer
- Is distributed to suitable suppliers (at least three per discipline)

Detail Design (DD) (planning for construction, preparation of tender documents)

Output from DD Phase (II/III)

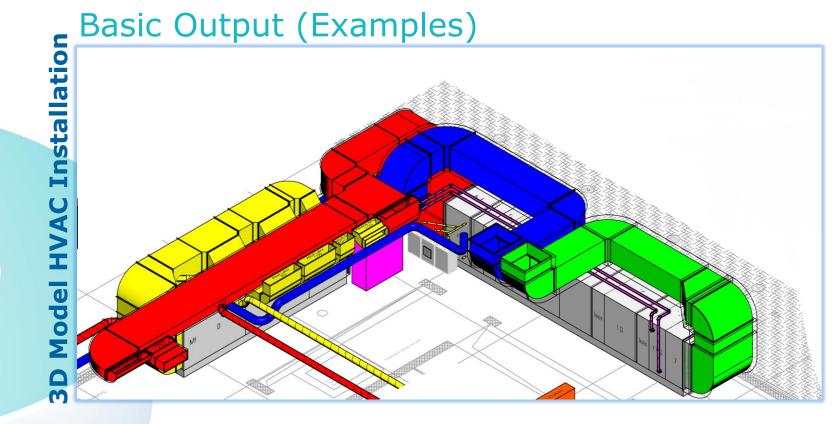
Selection of most suitable supplier:

- Typical process of supplier selection
 - Evaluation of offers (Planner)
 - Awarding & negotiation meetings (Planner/Customer/Supplier)
 - Revision of initial offer (Supplier)
 - Evaluation of revised offers (Planner)
 - Final negotiations (Customer)
 - Contract (Customer/Supplier)
- For GMP-relevant systems: Supplier Audit may be required

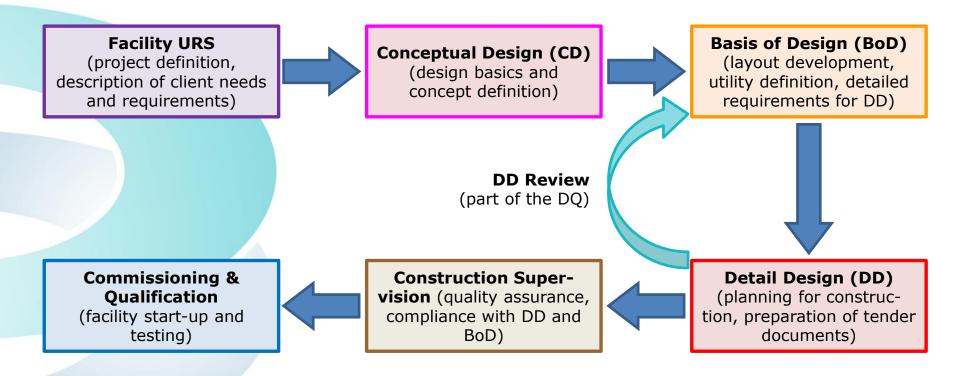
Output from DD Phase (III/III)

Detail Design Documents:

- Elaboration of detailed design
- Selection of most suitable materials & components
- Spatial coordination
- Interfaces to other disciplines
- Implementation plans for review by customer
- "Good for Construction" (GFC)

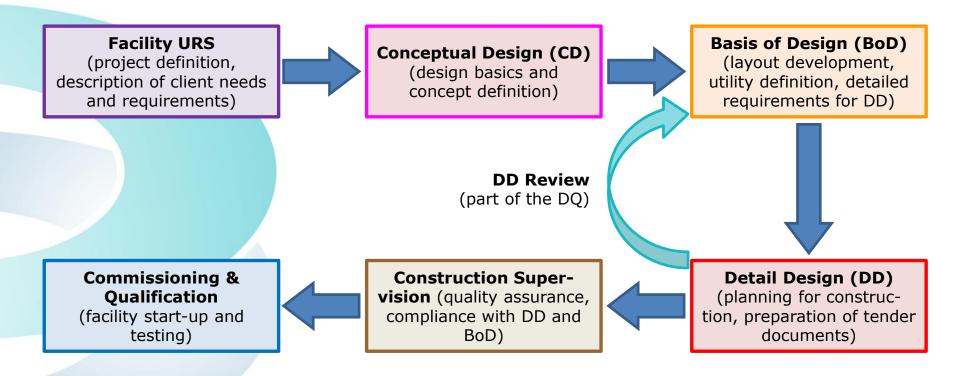

Output from DD Phase (Example) **3D Model WFI Distribution System**

Basic Output (Examples) 0T400 1 GSL GSH 3M 11450 2M 11 | 2M 11 XV480 TI 201 11 TT 201 11 PDT 2M 11 TT 420 2M 11 PDT 2M X420 HC410 ¢ 211 11 U400 GS470 GS470 GS471 TI TH00 20/11 XV410 FD80 081 J₂₁₄ 2M 11 H400 Cold Fog Pumperstat MU400 Δŝ TH50 ŝĀ 2M 11 XV411 Schacht 20111 [D80-C#1 J 2M 11 20416 20111 20111 20200 25-KVR-5 TI TI270 #11.3%.U 0801.32.13 тт ттеео 200 11 ГD80 200 11 ГD80 200 11 ГD80 211 11 V200 P410 PSL 20 PS400 PS410 25 型(XV420) (CV430) (S) ХV420 ГD80 м 11 м 11 VX460 20/11 XV239 XV239 20/11 XV239 20/11 XV239 20/11 20/11 20/11 XV239 2M 11 VX242 29/ 11 XV231 11 TI230 2M 11 L VX2112 080 J 20 11 XV243 N 29.11 2M 11 XV217 20/ 11 XV213 F D80 2M 11 PDI PI210 X220 I F210 I M 11 POT 2M 11 TI PT210 TI220 QS210 翻 34.11 [D84-1911 DS200 ²⁰¹¹¹ U200 F200 G5200 G5201 2% HH240 POI P000


Unit Air Exhaust త Makeup-P&ID

Project Steps – Design & Realization

Construction Supervision (quality assurance, compliance with DD and BoD)


Purpose

A "Construction Supervision" should fulfill the following purposes in a construction project:

- Coordination of different suppliers
- Compliance with the time schedule
- Quality assurance on the construction site
- Compliance with "GFC" (Good For Construction) planning
 - Management of changes

Project Steps – Design & Realization

Definitions (I/II)

Commissioning

Documented activities for start-up and testing of NON-GMP and GMP systems.

Within commissioning it will be verified, that all user requirements are met and that the system has been built, installed, and is functioning correctly.

→ All systems need commissioning

Qualification

Action of proving and documenting that any premises, systems and equipment are properly installed, work correctly and lead to the expected results.

 \rightarrow GMP systems need qualification

Definitions (II/II)

Leveraging

If commissioning tests executed for GMP-systems have been documented according to Good Documentation Practice (GDP), appropriate tests do NOT have to be repeated for qualification, but can be referenced (leveraged)

 \rightarrow Minimizing qualification effort by leveraging commissioning tests

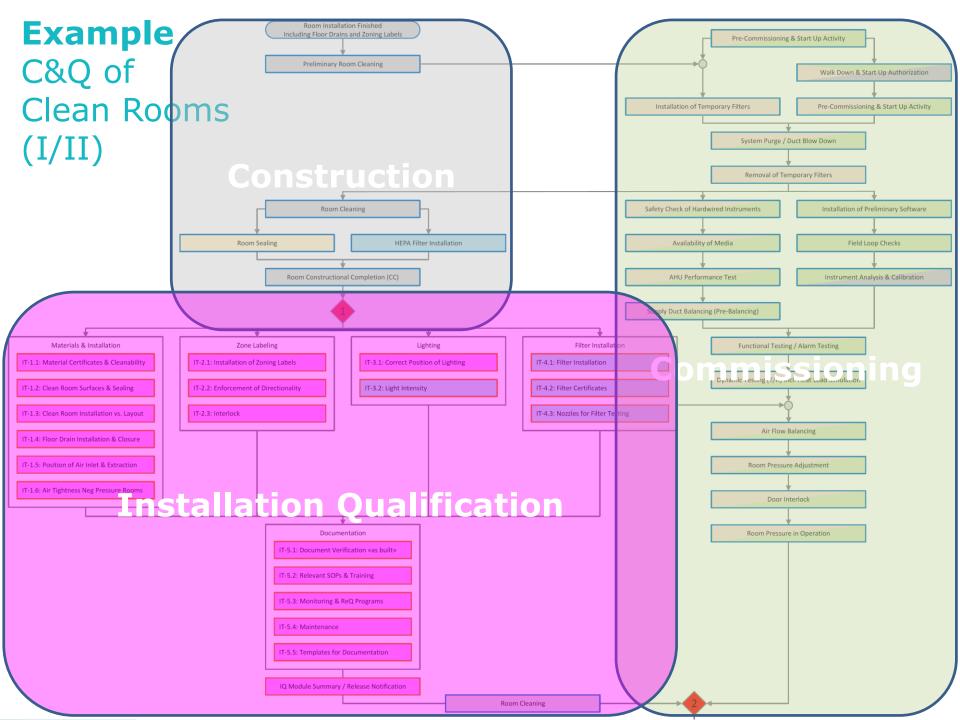
Qualification

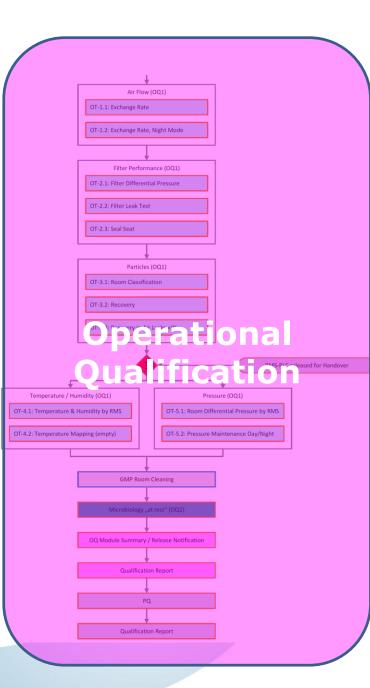
Qualification is divided into four different phases:

- DQ (Design Qualification)
 - \rightarrow Verification of design against user requirements (URS/RA)
- IQ (Installation Qualification)
 - \rightarrow Verification of installation against design (e.g. P&ID, parts list)
- OQ (Operational Qualification)
 - \rightarrow Verification of functionality against specification (e.g. FS)
- PQ (Performance Qualification)
 - \rightarrow Verification of overall performance

Purpose

A "Commissioning & Qualification" phase should fulfill the following purposes in a construction project:


- Lead to a well-working facility which complies with...
 - Initial user requirements
 - Regulatory requirements
- Well-documented NON-GMP systems
- GMP systems qualified according to a risk-based approach



Goal

The goals of a well-structured and well-organized Q&C:

- Minimize administrative efforts for C&Q
 - \rightarrow Qualification only for GMP systems
 - \rightarrow Employment of a risk-based qualification approach
- Coordination of C&Q activities
 - \rightarrow Only start with qualification after thorough commissioning
- Benefit from synergies of C&Q activities
 - \rightarrow Leverage as many tests as possible (avoid repeating tests)

Example C&Q of Clean Rooms (II/II)

- Interdisciplinary System
 - HVAC
 - Clean Rooms
 - Automation (GMS & BMS)
 - Equipment
- Major Dependencies

Construction <-> Commissioning <-> Qualification

Thorough planning of C&Q activities required

Further Questions?