

QbD for Tangential Flow Filtration

Tathagata Ray

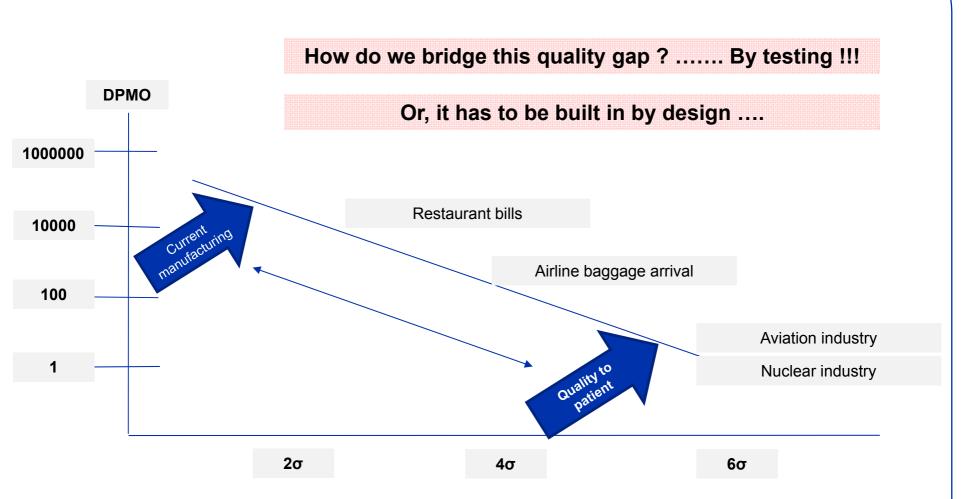
Manager **Biomanufacturing Sciences Network**

16th Annual General Meeting 5th - 7th October 2015 Bangkok, Thailand

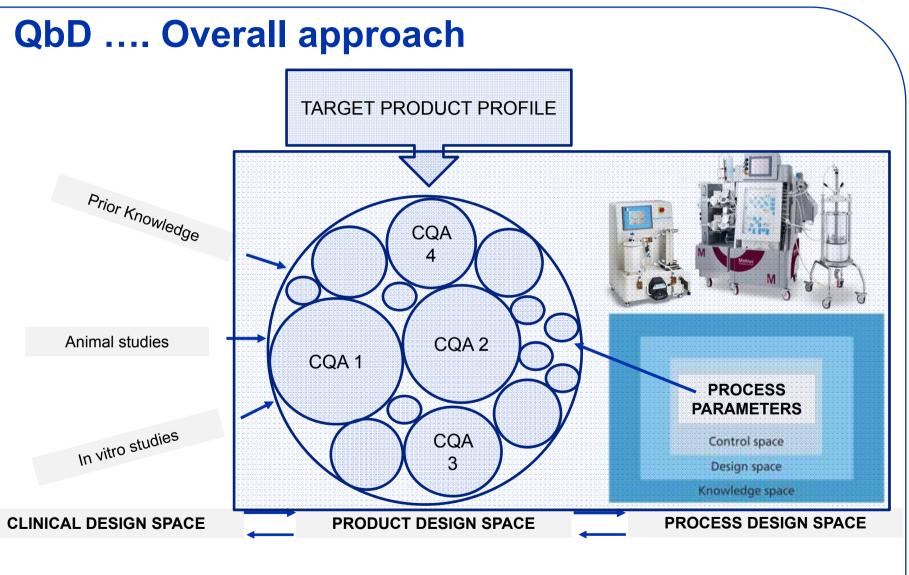
Quality vaccines for all

Agenda

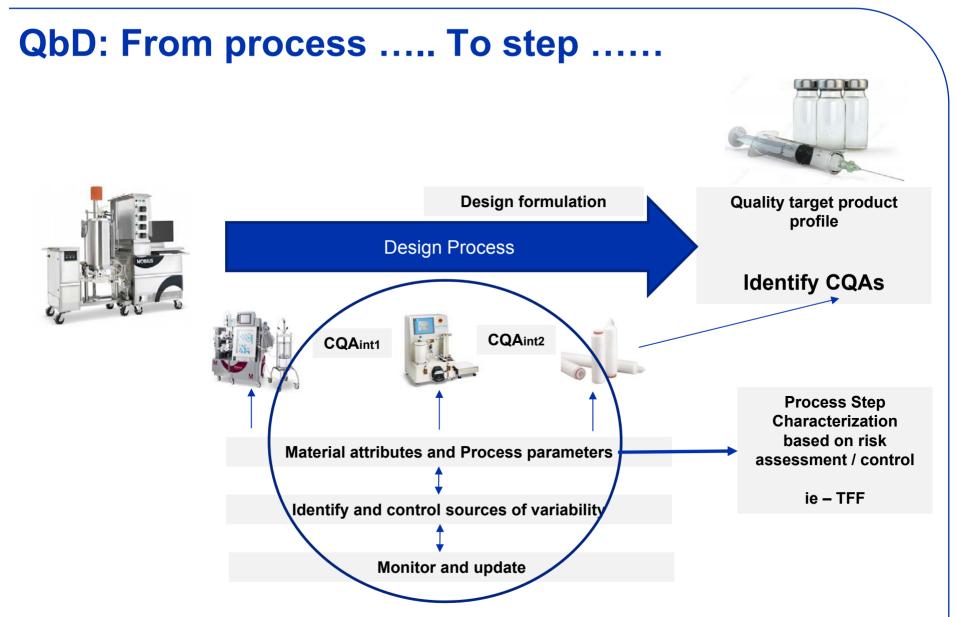
1 QbD Concept
2 Review of TFF
3 Key Application of TFF in common vaccines
4 QbD workflow


Quality is a key regulatory concern

Suitability of either a drug substance or product for its intended use (ICH Q6A)


Efficacy/Strength	Does the production process result in product/residues that interfere with final product strength or efficacy?
Identity & Purity	Does the production process result in product/residues that interfere with final product purity?
Safety	Does the production process result in product/residues that are toxic to the patient?

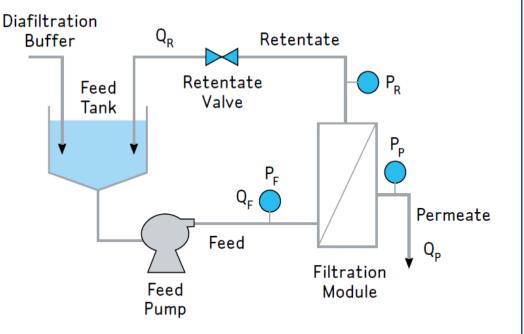
Quality in Biopharmaceuticals: Where we stand Where we intend to



CONCEPT > DESIGN > PRE-CLINICAL > CLINICAL > MASS PRODUCTION

Basic UF Applications & Schematic

Clarification


- Product passes through the membrane
- Larger particles / molecules retained by membrane

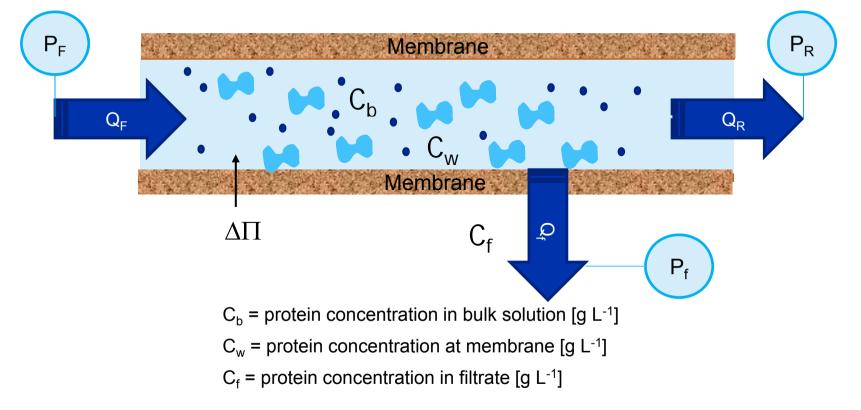
Concentration

- Product retained by the membrane
- Solvent (buffer) passes through the membrane

Diafiltration (Buffer Exchange or contaminant removal)

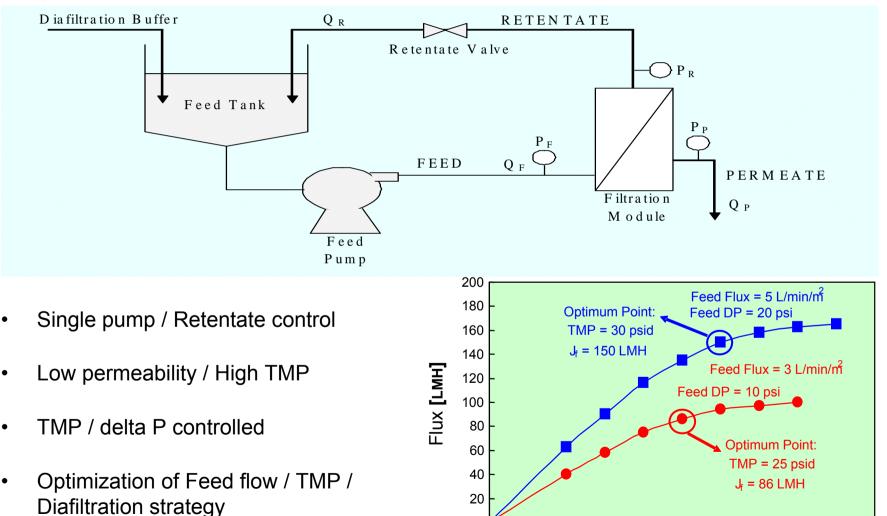
- Product retained by the membrane
- Solvent (buffer) passes through the membrane, new solvent added to product
- Contaminant removal

Pressures and Flows in UF Membranes


 P_F = feed pressure [bar or psi] P_R = retentate pressure [bar or psi] P_f = filtrate pressure [bar or psi] $\Delta \Pi$ = osmotic pressure [bar or psi]

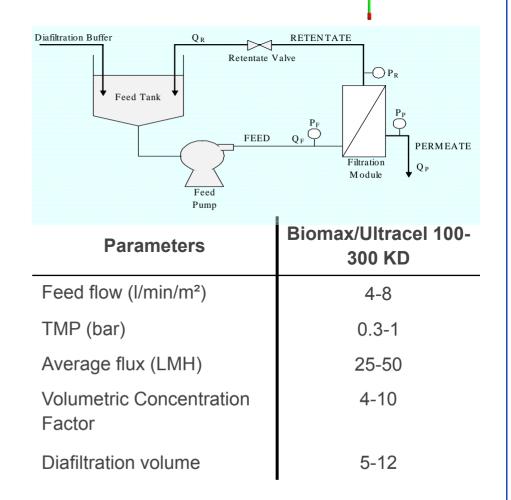
 Q_F = feed flow rate [L h⁻¹]

 Q_R = retentate flow rate [L h⁻¹]


 Q_f = filtrate flow rate [L h⁻¹]

k = mass transfer coefficient [L/m²*h]

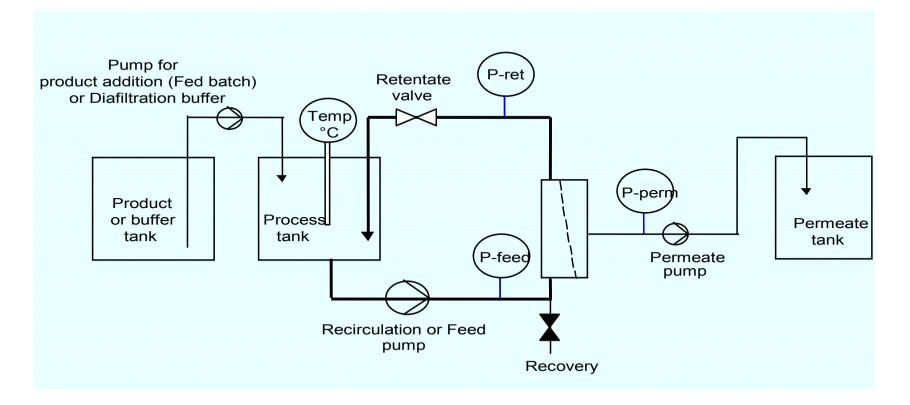
Typical TFF UF applications


TMP [psid]

Adenovirus vaccine: Typical UF TFF process parameters

Purification: last UF/DF Step

- Success Criteria
 - Good Yield & Retention
 - Contaminant removal
 - ► RNA
- Solution
 - No permeate control
 - Pellicon[®] 2
 Biomax[®] or Ultracel[®] 100 or 300kD, C screen



Typical TFF MF / Open UF applications

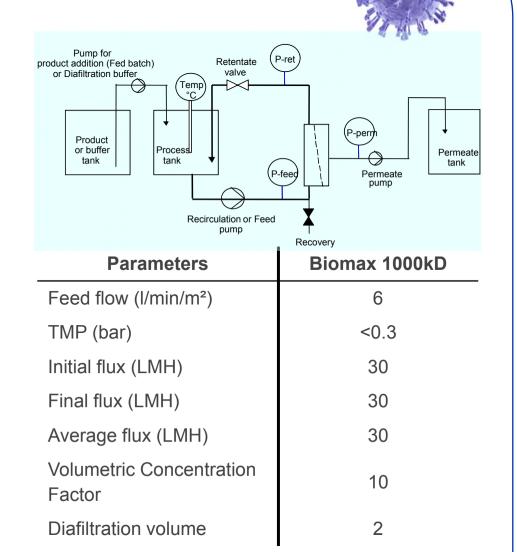
Set up of an equipment with permeate control

- 2 Pump System / Flux controlled
- Permeate Valve & Flow Meter

Viral Antigen: Egg-based Influenza Vaccine Typical MF / Open UF TFF process parameters

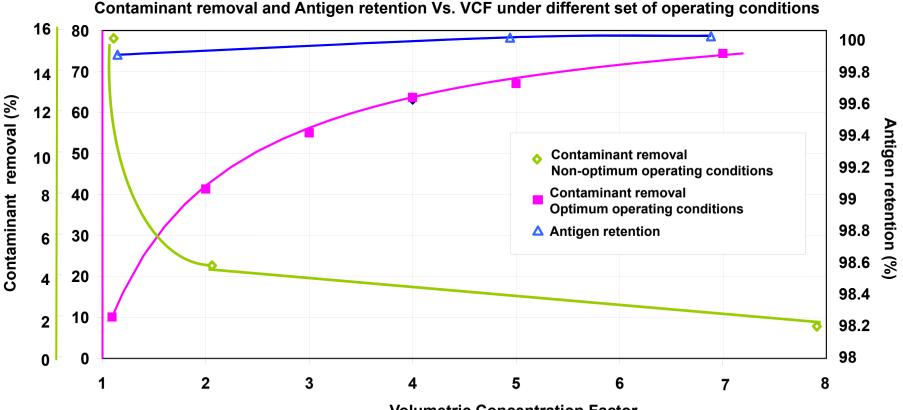
Purification:

Success Criteria


- Good yield & Retention
- Higher purity and Contaminant Removal
 - Ovalbumine

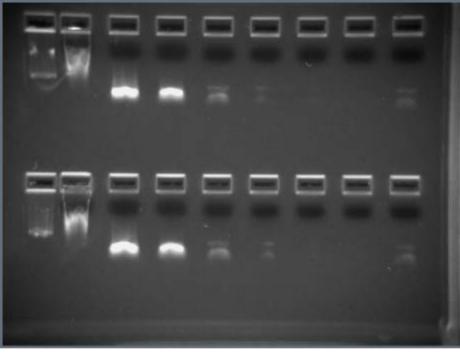
Solution

- Permeate control
- Pellicon [®] 2
 Biomax [®] 1000, V Screen


Result

- Retention > 99.99%
- Contaminant removal > 75%

With or Without Permeate Control



Volumetric Concentration Factor

Optimum operating conditions: Non-optimum operating conditions: feed flow = 6 lpm/m², TMP< 0.4 bar, permeate controlled at 30 LMH feed flow = 6 lpm/m², TMP> 1 bar, no permeate control

Case study results: Clearance of Benzonase[®] digested DNA across diafiltration with Pellicon[®] 2 Biomax[®] 300 kDa

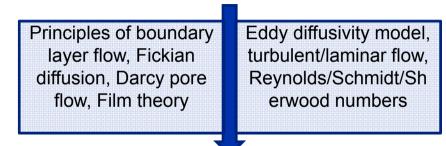
8 9 1 2 5 6

Various UF samples

- Lane 1 Marker (100 BP)
- Lane 2 Undigested DNA in Feed
- Lane 3 After Benzonase[®] digestion
- Lane 4 Post Recirc retentate
- Lanes 5, 6, 7, 8 Retentate samples after 1, 3, 5, 8 DV
- Lane 9 Permeate at 5DV

Benzonase[®] can also be effectively removed with diafiltration

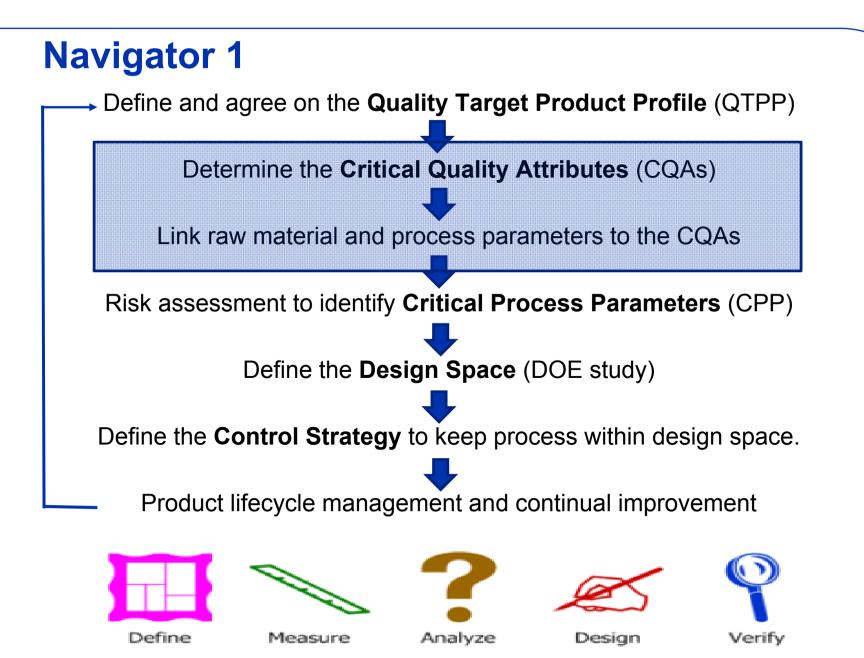
Or


Can also be removed in subsequent chrom operations

TFF and QbD

TFF

Well known mass transfer fundamentals Proven engineering principles and design equations



Mechanistic understanding of hydrodynamic principles governing separation process

Identifies "Optimal operating conditions" and define "Design space"

QbD

TFF step attributes - Vaccines

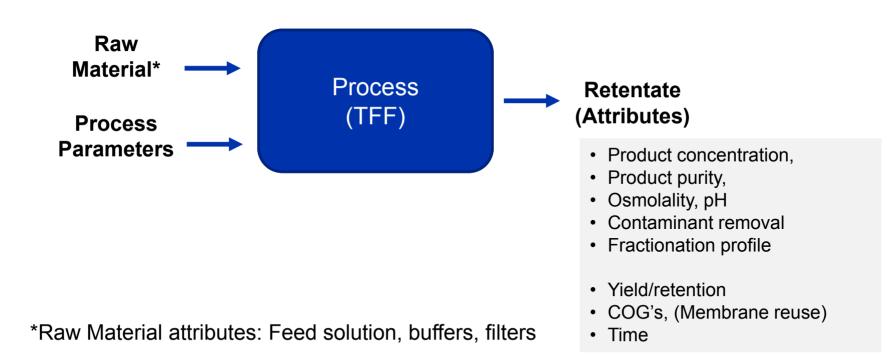
Function	Performance Specs	Attribu	tes
		Product (CQA)	Performance (KPA)
Harvest	Concentration (dewatering), Purification LRV (HCP, NA), Clarification LRV (Turbidity), Yield, Cost, Time	Purification LRV (HCP, NA)	Concentration (dewatering), Clarification LRV (Turbidity), Yield, COGs, Time
Purification / Fractionation	Purification LRV (HCP, NA, Benzonase [®] , Conjugation reagents, ADH), Yield, Cost, Time	Purification LRV (HCP, NA, Benzonase [®] , Conjugation reagents, ADH)	Yield, COGs, Time
Formulation	UFDF final concentration, buffer composition, LRV process extractable, Yield, Cost, Time	UFDF final concentration, buffer composition, LRV process extractable	Yield, COGs, Time

Examples of UF product CQAs in a Vaccine process

Vaccine	Product CQA	Process template
Influenza	Contaminant removal (Ovalbumin, Ovotransferrin, Ovoglobulins, Lysozyme and others) Product conc./ quality KPA – Yield, COGs, Time	Fertilized infection Virus Virus Nactivation Virus Virus
Vectored Vaccine (Malaria, Dengue)	Benzonase [®] / NA removal Product conc./ quality Buffer change KPA – Yield, COGs, Time	$ \begin{array}{c} \hline \\ \hline $

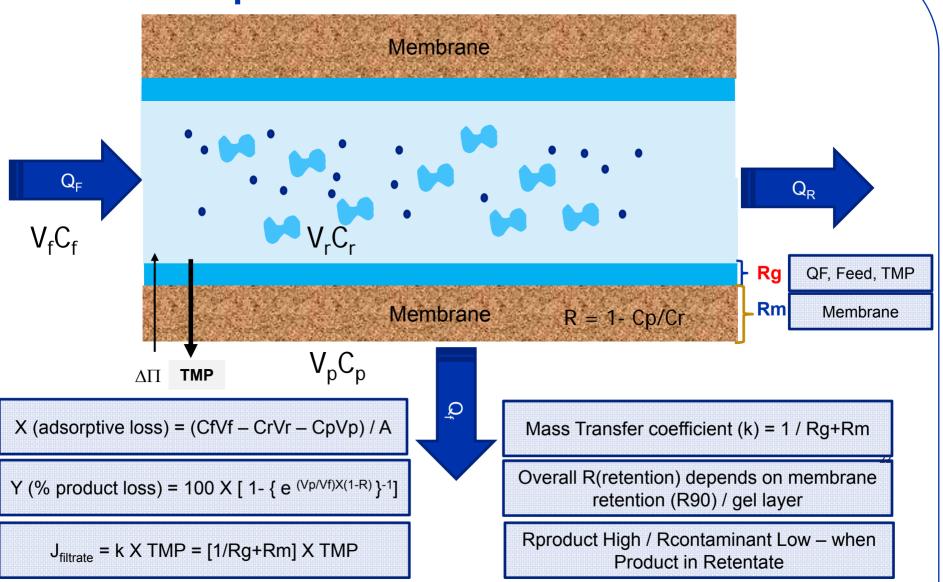
Examples of UF product CQAs in a Vaccine process

Vaccine	Product CQA	Process template
Polysacchar ide Conjugate Vaccines	Product conc. Purity Buffer exchange	Fermentation Centrifugation Centri
(Pneumonia ,Meningitis, Influenza)	ADH removal from PRP - ADH mass Fractionation of PRP-ADH-TT complex from unreacted mass	WF/DF Activated carbon filtration Precipitation Secondary Clarification Centrifugation Purification PRP-ADH Image: Control of the secondary of the secondar
	Removal of reaction chemicals KPA – Yield, COGs, Time	KI-detergent complex Ion Exchange Chromatography Fractionation PRP-ADH-TT Filtration Image: Chromatography Image: Chromatography Image: Chromatography Conjugation with carrier protein UF/DF Chromatography UF/DF Image: Chromatography Diafiltration Image: Chromatography Image: Chromatography Image: Chromatography Image: Chromatography Image: Chromatography

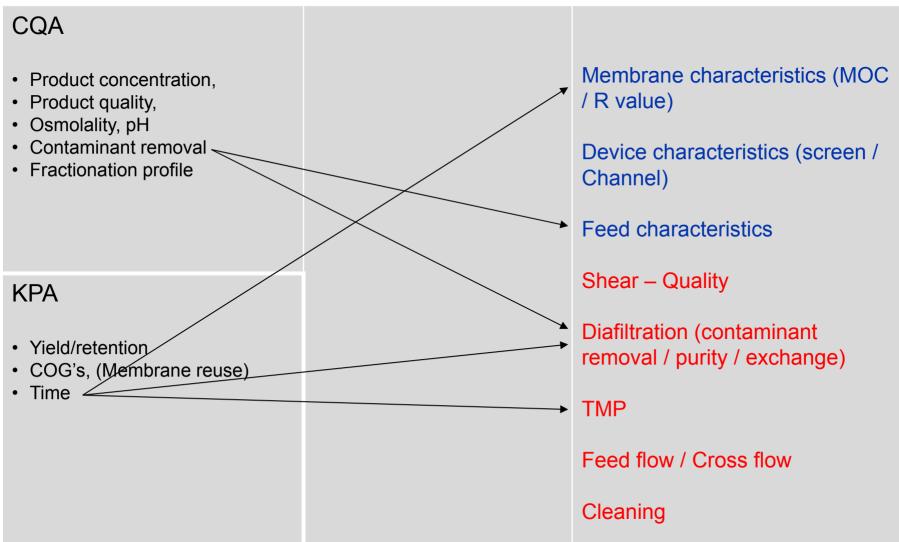


Examples of UF product CQAs in a Vaccine process

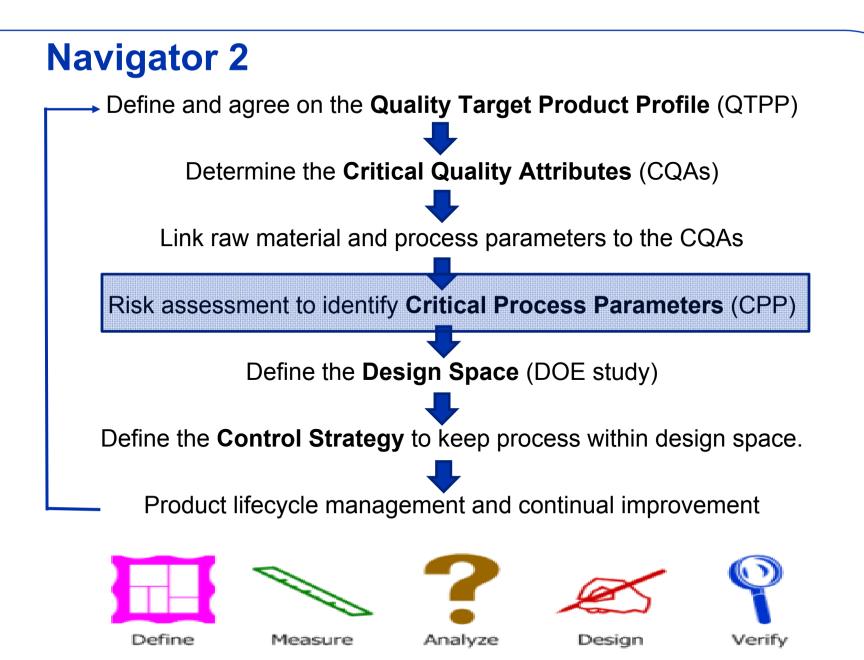
Vaccine	Product CQA	Process template
Live Attenuat Viral Vaccines (MMR, Dengue JE, Oral polio)	Buffer exchange Benzonase® / NA removal	Media Prep Media Prep Media Prep Suspension Suspension Suspension Culture Microcarrier TF (MF) Clarification
	KPA – Yield, COGs, Time, Operator safety (Clarification)	Final UF/DF Final Formulation Final Formulation Chromatography Optional)



Link Material attributes and Process parameters to CQA & KPA



Overview of process and material attributes



Link Material attributes and Process parameters to CQA & KPA

Risk assessment

Scoring of Process Parameters and Quality (& Process) Attributes

Pro	cess Parameters	Quality (or Process) Attributes		
Impact Score	Ranking Criteria	Weight Score	Ranking Criteria	
10	Strong relationship known based on available data and experience	10	Established or expected direct relationship to product quality or safety (incl. mfg safety)	
7	Strong relationship is expected	7	Unsure. Impact to product quality or safety or key business drivers expected	
5	Not-so-strong relationship expected or known	5	Unlikely to impact product quality or safety	
1	Known to not have a relationship	1	No product or safety impact expected	

Cumulative score = \sum (Impact of parameter x Weight of quality attribute)

TFF Risk Analysis – Example of a UF-DF in typical formulation application

	Attribute Weight	10	5	5	10	7	10		
		Proc	ess Attri	bute	Product Attribute				
Phase	Parameter	Step Yield	Membrane Reuse	Process Time	Product aggregation (quality)	Product titre (Retentate conc)	Transfer to formulation buffer	Score	
	Feed Flow Rate (LPM/m ²)		5	5	7	5	1 🤇	175)
	Transmembrane Pressure (psi)	1	5	10	5	5	1 🤇	180	$\mathbf{)}$
	Process Loading, L/m ²	5	5	7	5	1	1 🤇	177)
Canadoiat	No of DiaVolumes	1	1	7	5	1	10 🤇	207	\mathbf{i}
Conc/Diaf	Feed characteristics (Titre)	1	1	1	5	5	1	115	
	Recovery, L/m ²	10	1	1	1	1	1	137	
	Membrane characteristics	5	1	7	1	1	1	117	
	Temperature	1	1	7	5	1	1	117	l

TFF Risk Analysis – Example of a UF-DF in typical purification application

	Attribute Weight	7	5	5	5	5	10		
		Proc	<mark>ess Attri</mark>	bute	Pro				
Phase	Parameter	Step Yield	Membrane Reuse	Process Time	Product quality	Product titre (Retentate conc)	Removal of contaminants (eg - Albumin / Benzonase /	Score	
	Feed Flow Rate (LPM/m ²)	1	5	5	7	5	1	127	
	Transmembrane Pressure (psi)	1	5	10	5	5	1 🤇	142	D
	Process Loading, L/m ²	5	5	7	5	1	1	135	
Care/Dief	No of DiaVolumes	1	1	7	5	1	10 🤇	177	Þ
Conc/Diaf	Feed characteristics (Titre)	1	1	1	1	7	5	107	
	Recovery, L/m ²	10	1	1	1	1	1	100	
	Membrane characteristics	7	1	7	1	1	5 🤇	149	Þ
	Temperature	1	1	7	5	1	1	87	

TFF Risk Analysis – Example of a UF-DF in typical fractionation application

	Attribute Weight	7	5	5	5	7	10		
		Proc	Process Attribute			Product Attribute			
Phase	Parameter	Step Yield	Membrane Reuse	Process Time	Product aggregation (quality)	Product titre (Retentate conc)	% product	Score	
	Feed Flow Rate (LPM/m ²)	1	5	5	7	5	1	137	
	Transmembrane Pressure (psi)	1	5	10	5	5	1 🤇	152	D
	Process Loading, L/m ²	5	5	7	5	1	1	137	
	No of DiaVolumes	1	1	7	5	1	10 🤇	179	D
Conc/Diaf Feed characteristics (Titre) Recovery, L/m ² Membrane characteristics	Feed characteristics (Titre)	1	1	1	1	7	5	121	
	Recovery, L/m ²	10	1	1	1	1	1	102	
	Membrane characteristics	7	1	7	1	1	7 🤇	171	D
	Temperature	1	1	7	5	1	1	89	

TFF Risk Analysis – Example of a UF-DF in a Influenza formulation - Sample experimental design for DOE characterization

Parameter	Low	Middle	High	Score	Scientific Rationale
Feed Flow Rate (LPM/m ²)	3	5	7	175	Impacts polarization, fouling & potentially quality
Transmembrane Pressure (psi)	2	4	6	180	Impacts flux (time), polarization and fouling
No of Diavolumes	6	10	14	207	Impacts time and buffer exchange efficiency
Loading, L/m ²	20	30	40	177	Potential impact on process time, COGs
Feed Stock	2-3 lots re	presenting in Feed	variability	Linking Variable	Potential for variability in feed titre, or impurity levels to impact UF-DF performance
Filter	2-3 lots re in Memb	presenting rane chara	•	Linking Variable	Variability in membrane retention can potentially influence yield, contaminant removal

QbD Concept - Process Parameters

Process parameters, whose variability has an impact on a CQA, need to be monitored and controlled

Critical Process Parameter (CPP)

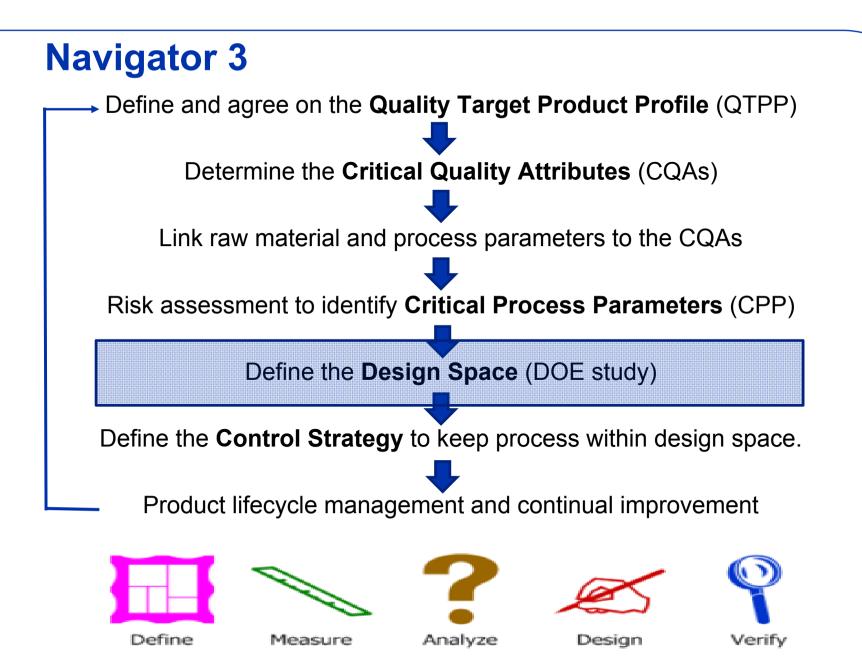
- Variability in CPP has an impact on critical quality attribute and therefore should be monitored or controlled to ensure process produces the desired quality.
- A CPP has a <u>high risk of falling outside the design space</u>.
- Well Controlled Critical Process Parameter (WC-CPP)
 - Variability in CPP has an impact on critical quality attribute and therefore should be monitored or controlled to ensure process produces the desired quality.
 - A CPP has a low risk of falling outside the design space.

Key Process Parameter (KPP)

- An adjustable parameter (variable) of the process that, when maintained within a narrow range, ensures <u>operational reliability</u>.
- A key process parameter does not affect critical quality attributes.

General Process Parameter

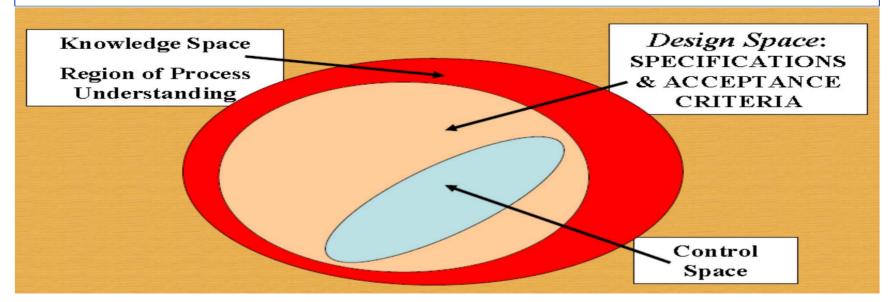
All "other" parameters



A Hypothetical Summary of Process Parameter Classification and Ranges - Formulation

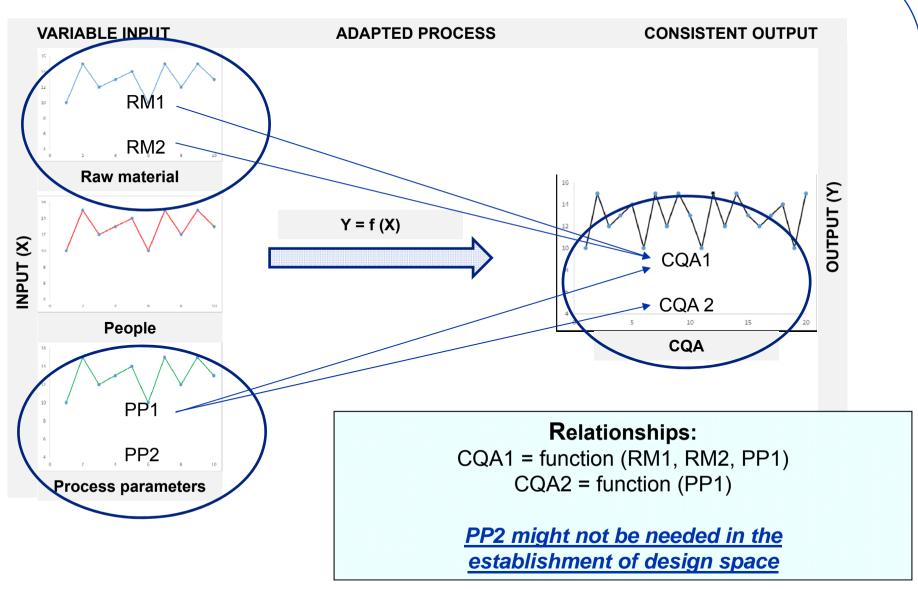
Process Parameter	Acceptable	Parameter	Rationale	Control
FIOCESS Farameter	Range	Classification	(Justification)	Strategy
Feed Flow Rate (LPM/m ²)	3.5-6.5	КРР	DOE	Skid Control
Transmembrane Pressure (psi)	16-45	КРР	DOE	Skid Control
Process Loading, L/m ²	18-42	GPP	DOE	Batch Procedure
No of DiaVolumes	6-12	КРР	DOE	Skid Control
Feed Concentration, g/L	6-14	GPP	Modular (Prior knowledge)	Titre Analysis
Recovery, L/m²	70-90%	GPP	Modular (Prior knowledge)	Skid Control
Temperature, C	15-30	GPP	Modular (Prior knowledge)	Environmental Control
CIP Feed Flow Rate (LPM/m ²)	3.5-6.5	GPP	Modular, Vendor	Skid Control
CIP Transmembrane Pressure (psi)	8-25	GPP	Modular, Vendor	Skid Control
CIP time, min	30-90	GPP	Modular, Vendor	Skid Control
CIP solution concentration, M	0.05-0.5	GPP	Modular, Vendor	Batch Procedure
CIP Temperature, C	15-30	GPP	Modular, Vendor	Environmental Control
Normal Water Permeability	within 25% of New	КРР	Modular, Vendor	Batch Procedure
Integrity Test	< Specification	КРР	Vendor	Batch Procedure

In a "Purification" application "Diafiltration" can be "CPP" based on risk assessment wrt CQA

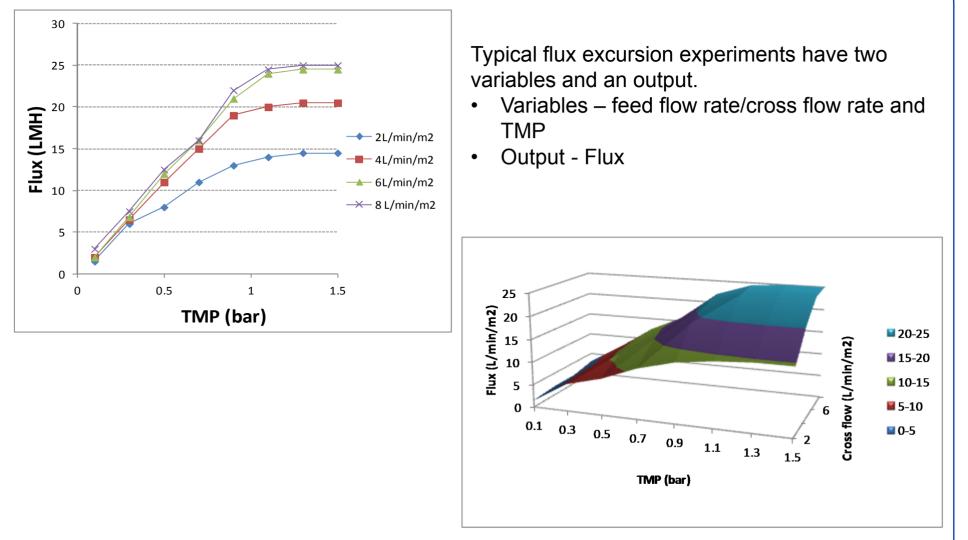


QbD Concept - Design Space

Design Space


- Defined as: "the multidimensional combination and interaction of input variables (e.g., material attributes) and process parameters that have been demonstrated to provide assurance of quality." ICH Q8(R2), <u>http://www.fda.gov/downloads/Drugs/Guidances/ucm073507.pdf</u>
- Demonstrated range of all process parameters where process meets the CQAs
- Consists of Knowledge space, design space and control space

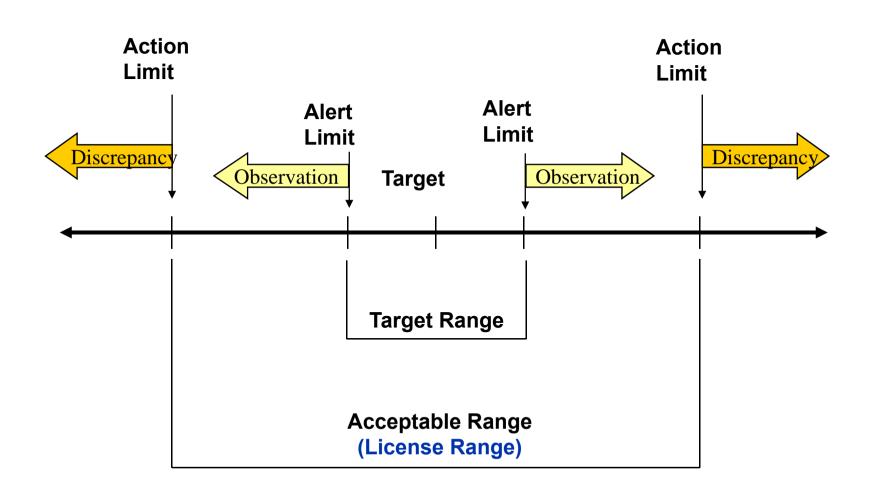
"Implementation of Quality by Design". J.F. Haury, Amgen 2006 http://www.fda.gov/downloads/AboutFDA/CentersOffices/CDER/ucm118776.pdf



CQA and **Process** design space

Example of Experiments to Determine Acceptable Range of Process parameters

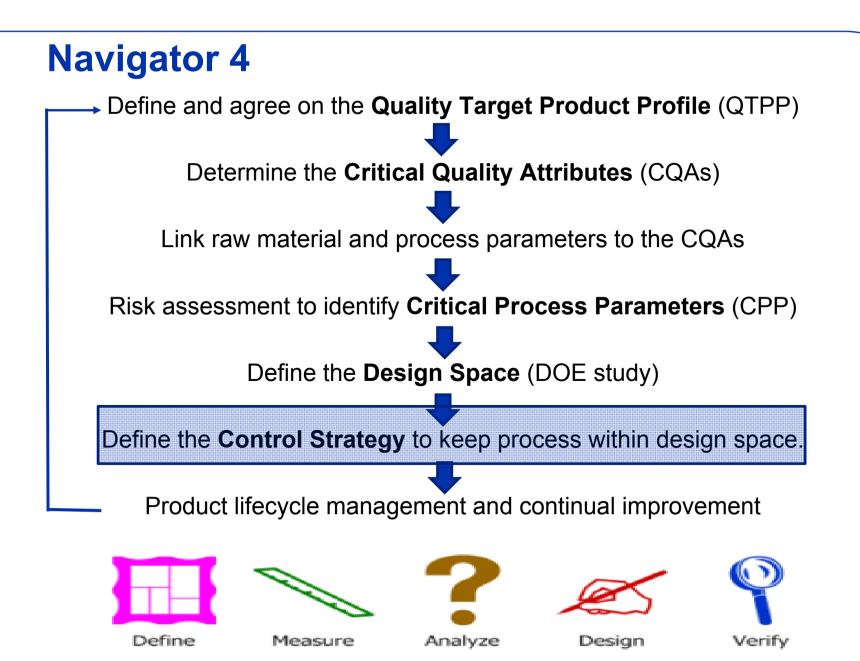
Parameter Ranges


Challenges in setting Process Parameter Ranges in DOE studies

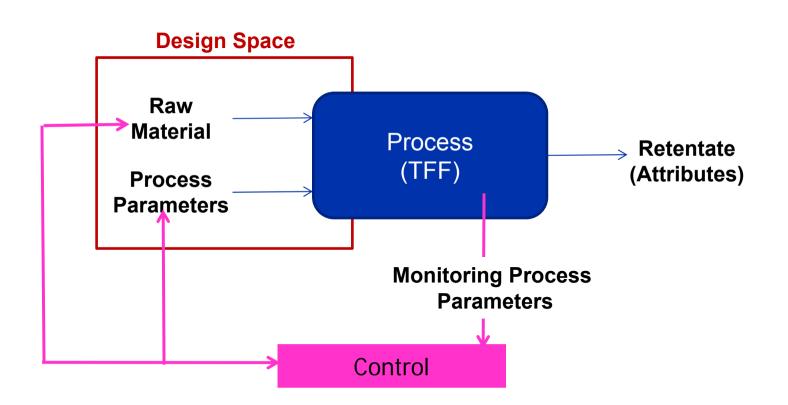
If too wide	 Everything becomes critical
If too narrow	 Nothing is critical
"Right " Range	 Meaningful determination of critical

Prior knowledge & platform parameter information serve as good guidance

Alert and Action Limits



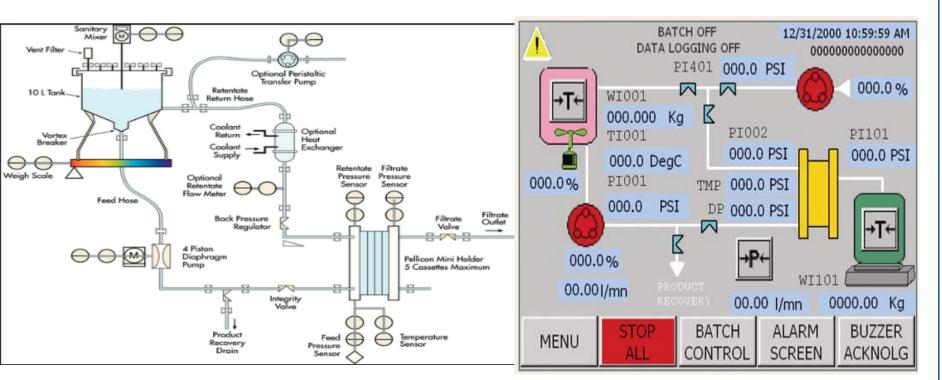
Parameter range - UF Example


Process Parameter	Target	Target Range	Acceptable Range
Feed Flow Rate (LPM/m ²)	5	4.5-5.5	3.5-6.5
Transmembrane Pressure (psi)	30	25-35	16-45
Process Loading, L/m ²	30	28-32	18-42
No of DiaVolumes	8	7.5-8.5	6-12
Feed Concentration, g/L	10	9-11	6-14
Recovery, L/m ²	80%	75-85%	70-90%
Temperature, C	20	18-22	15-30
CIP Feed Flow Rate (LPM/m ²)	5	4.5-5.5	3.5-6.5
CIP Transmembrane Pressure (psi)	16	12-20	8-25
CIP time, min	45	40-50	30-90
CIP solution concentration, M	0.2	0.1-0.3	0.05-0.5
CIP Temperature, C	20	18-22	15-30

Design Space and Control Strategy

Parameter Monitoring & Control: UF / MF Examples

Feed	Feed concentrations of product, impurities and buffer components can be measured directly and/or controlled through the previous step.
Filter	Filter properties such as retention, permeability – monitor through vendor quality audit.
Feed Flow, TMP	Control the feed pump flow using a mass flow meter & PID control. Use retentate / permeate flow control valve & pressure transmitters (feed, retentate, permeate) to control TMP (PID).
Concentration End-Point	Retentate tank volume (Wt) or level specification.
Diafiltration End-Point	Maintain diafiltration flow rate = permeate flow rate through retentate level control. Time or permeate volume measurement. High end analytical support in case of purification /fractionation


Control of Process Parameters

- Ensure product quality and safety (for CPPs)
 - Control within design space to ensure consistent product quality and process performance
- Ensure that the commercial manufacturing process is consistent and robust (KPPs)
 - Also, controlled within target range to ensure consistent process performance
 - ► Non CPPs need to be controlled just as much as CPPs do

Control of Process Parameters

- Control Strategy
 - A control plan derived from current product and process understanding that assures product quality and process performance
 - A method to keep or maintain the 'process' within the design space.

Summary

- QbD represents a scientific approach to build-in & ensure quality in drug products
 - Emphasizes process understanding, relationship between CPPs, CQAs, QTPPs using a methodical approach (risk assessment)
- QbD principles may be applied to TFF to determine the important process parameters
- Feed flow, TMP (flux), Diavolumes can be CPPs or KPPs
- Process control strategies help ensure that process parameters are maintained within the desired range to ensure product quality and reliable process operation

merckmillipore.com/vaccines

Tathagata Ray t.ray@merckgroup.com

Merck Millipore is a division of MERCK