

Production and Purification of Virus like particle (VLP) based Vaccine

Priyabrata Pattnaik, PhD *Director – Worldwide Vaccine Initiative*

16th Annual General Meeting 5th - 7th October 2015 Bangkok, Thailand

Quality vaccines for all

Outline

Motivation

- VLP vaccine candidates have become quite popular of late
- > VLP-based processes are, however, currently quite diverse
- We undertook an effort to standardize the process
- We used hepatitis C VLP as a model
- This presentation will explain the approach taken and present the results obtained

Why virus-like particles (VLPs)?

- Contain repetitive high-density displays of viral surface proteins that elicit strong T cell and B cell immune responses
- Non infectious because they do not contain genetic material, thus cannot replicate and are safer
- > Their size (40-120 nm diameter) is optimal for uptake by dendritic cells
- > Can be produced in a variety of cell culture systems
- Can self assemble in vivo
- Proven technology (Hepatitis B and Human Papilloma Virus vaccines)

VLPs for hepatitis C vaccine development

Capsid and structure VLP from retrovirus (murine leukemia virus)

Hepatitis C

- > 170 million people infected
- Cirrhosis, liver cancer, death
- Current therapies only partially effective, costly and poorly tolerated
- No vaccine currently exists

300-400 nm

Insect cell / baculovirus VLP production platform

Recombinant baculovirus (BV) is used to infect insect cells

Key features

Transient production

High cell densities

Regulatory acceptance

- Cervarix[®] (GSK)
- Flublok[®] (Protein Sciences)
- Several late-stage clinicals

Challenges in VLP vaccine production

- Low production yields
- Stability of enveloped VLPs
- > Difficulties in baculovirus (BV) removal lowers recovery
- No established platform processes for purification

Work carried out in collaboration with iBET

iBET: Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal

Typical VLP-based vaccine process Insect cell / baculovirus VLP production platform

Typical VLP-based vaccine process Insect cell / baculovirus VLP production platform

Insect cell culture

- Cell culture was carried out in stirred tank glass bioreactor and disposable bioreactor (Mobius[®] 3L bioreactor)
- Sf9 insect cells and Sf900II cell culture media were used in the process
- Mobius[®] 3L bioreactor was first operated at same conditions previously used for stirred tank glass bioreactors
 - Cell aggregation
 - Formation of foam
 - Longer lag phase
 - Lower viable cell concentration

Insect cell culture conditions improved based on experience with Mobius[®] bioreactor

- Increased agitation rate
- Increased cell density of inoculation
- Replaced micro sparger with an open-pipe sparger

Microscopic evaluation of cells

Western blot analysis of VLPs using three markers

14

Successful use of Mobius[®] bioreactor for VLP production

- Successful growth of Sf9 insect cells and infection with baculovirus for production of VLP vaccine using Mobius[®] 3L disposable bioreactor
- Comparable cell and VLP properties between disposable and glass bioreactors
- Reproducible performance of the disposable bioreactor was seen with identical results for three separate cell culture runs

Typical VLP-based vaccine process Insect cell / baculovirus VLP production platform

Clarification

Centrifugation

- Lab models used early on
- Well suited for large-scale production
- High capital expense
- Shear

Depth filtration

- Well suited for smaller vaccine batches
- Easier to scale
- Lower cost
- Disposable
- Gentle treatment
- Simpler process development
- Wide choice of depth filters

Clarification: throughput data

Disposable capsule filters Polygard[®] CN, nominal pore sizes of 10, 5, 0.6 and 0.3 µm Pleated, all-polypropylene depth filters Filter area: 17 cm²; Inlet flux: 988 LMH

Clarification: recovery data

Unlike centrifugation, depth filtration resulted in ~70% DNA clearance

Typical VLP-based vaccine process Insect cell / baculovirus VLP production platform

Concentration of clarified VLP harvest

Pellicon[®] cassettes

Two different ultrafiltration membranes

- > 300 kD composite regenerated cellulose (Ultracel[®] membrane, "CRC")
- > 100 kD polyethersulfone (Biomax[®] membrane, "PES")

Similar process conditions employed

- ➤ 4-5x concentration factor
- Loading: 72 L/m²; Feed flux: 480 LMH; TMP: 1 bar; P_{feed}: 0.6-0.9 bar; P_{retent}: 1.1-1.4 bar

Concentration of clarified VLP harvest – results

Both membranes were fully retentive of the VLP

Polygard[®] CN depth filters and Pellicon[®] cassettes with Ultracel[®] membrane offered best results

Clarification

- Filter-only clarification train can be used without compromising recovery yield of VLPs.
- Filter cascade composed of a Polygard[®] CN 5 µm filter followed by a 0.3 µm depth filter showed the highest recovery of HCV-VLP, improving on centrifugation/2° depth filtration
- Moderate DNA removal with depth filtration was seen

UF/DF

Pellicon[®] cassette with 300 kD regenerated cellulose membrane offered the best combination of recovery and purification

Typical VLP-based vaccine process Insect cell / baculovirus VLP production platform

Purification strategy

Anion exchange chromatography (AEX) resins used

Batch adsorption experiments (bind-elute)

- Fractogel[®] and two Eshmuno[®] prototypes approach target of 2 BV LRV
- Yield increases with increasing ligand density for Eshmuno[®] prototypes

Batch adsorption experiments (flow-through)

Inadequate performance in pure flow-through mode; Similar trends with ligand density

Adopted strategy: collect the flow-through fraction, then wash/elute the resin to recover more material

Column experiments Breakthrough curves for dynamic binding capacity

- 10% dynamic binding capacity ranges at 900-1300 ng VLP / mL of packed resin
- The Eshmuno[®] series has about 30% higher DBC compared to Fractogel[®]

DOE of flow-through conditions: Fractogel® TMAE Inputs: load NaCl (100/200/300 mM) and flow rate (100/200/400 cm/hr) Responses: % VLP recovery and BV LRV

Successful purification of VLPs using Fractogel[®] and Eshmuno[®] AEX chromatographic resins

- Successfully purified VLPs using Fractogel[®] TMAE commercial resins and Eshmuno[®] QPX prototype resins
- Yield of >60% with ~2 LRV baculovirus can be achieved with a flowthrough/wash purification strategy for both resins
- Options to increase recovery or purification depending on product value by varying process conditions

Optimum performance achieved

	Traditional lab process	New scalable process
Purity		
Baculovirus clearance	94%	97.6%
DNA clearance DNA		99.9%
HCP clearance HCP		82%
Recovery by P30 ELISA		
VLP recovery VLP	< 10%	~ 65%

Typical VLP-based vaccine process Insect cell / baculovirus VLP production platform

Typical VLP-based vaccine process Insect cell / baculovirus VLP production platform

Mobius[®] Bioreactor

Polygard[®]-CN 5.0→0.3 µm filters

Fractogel[®] AEX resins

Pellicon[®] Ultrafiltration cassettes with Ultracel[®] 300 kD membrane

Summary

- Successfully used Mobius[®] 3L disposable bioreactor for production of VLP-based vaccine in insect cell culture system
- ➢ Optimized downstream processing using Polygard[®] CN 5.0→0.3 µm depth filters followed by UF/DF using Pellicon[®] cassette with Ultracel[®] 300 kD membrane
- > Purified VLP by using Fractogel[®] resins and Eshmuno[®] QPX prototypes
- Integrated all the above components to achieve recovery and impurity clearance in line with requirements

Team and acknowledgments

Cristina Peixoto

Ricardo Silva

Rute Castro

Ana Sofia Coroadinha

Paula Alves

Manuel Carrondo

EMD/Merck Millipore

Alex Xenopoulos George Adams Andreas Stein Sylvain Ribaud

Accelerating your vaccine development.

merckmillipore.com/vaccines

Priyabrata Pattnaik, PhD priyabrata.pattnaik@merckgroup.com Cuitter@pattnaik_p Linked in. https://sg.linkedin.com/in/priyabratapattnaik

Merck Millipore is a division of MERCK