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Motivation

 VLP vaccine candidates have become quite popular of late

 VLP-based processes are, however, currently quite diverse

 We undertook an effort to standardize the process

 We used hepatitis C VLP as a model

 This presentation will explain the approach taken and present the results 
obtained
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Why virus-like particles (VLPs)?

 Contain repetitive high-density displays of viral surface proteins that elicit 
strong T cell and B cell immune responses

 Non infectious because they do not contain genetic material, thus cannot 
replicate and are safer 

 Their size (40-120 nm diameter) is optimal for uptake by dendritic cells

 Can be produced in a variety of cell culture systems

 Can self assemble in vivo

 Proven technology (Hepatitis B and Human Papilloma Virus vaccines)
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VLPs for hepatitis C vaccine development
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E1 and E2 glycoproteins from Hep C virus

Capsid and structure VLP 
from retrovirus  (murine leukemia virus)

Hepatitis C

 170 million people infected

 Cirrhosis, liver cancer, death

 Current therapies only partially 
effective, costly and poorly 
tolerated

 No vaccine currently exists



Insect cell / baculovirus VLP production platform

Recombinant baculovirus (BV) 
is used to infect insect cells

Key features

Transient production

High cell densities

Regulatory acceptance

 Cervarix® (GSK)

 Flublok® (Protein Sciences)

 Several late-stage clinicals
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~120 nm

VLP
BV

Source: Mena et al., Expert Reviews in Vaccines 10 (1), 1063-81 (2011)

60-80 nm



Challenges in VLP vaccine production

 Low production yields

 Stability of enveloped VLPs

 Difficulties in baculovirus (BV) removal lowers recovery

 No established platform processes for purification
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Work carried out in collaboration with iBET
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iBET: Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal 
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Insect cell culture
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 Cell culture was carried out in stirred tank glass bioreactor and disposable 
bioreactor (Mobius® 3L bioreactor) 

 Sf9 insect cells and Sf900II cell culture media were used in the process

 Mobius® 3L bioreactor was first operated at same conditions previously 
used for stirred tank glass bioreactors

 Cell aggregation

 Formation of foam 

 Longer lag phase 

 Lower viable cell concentration



Insect cell culture conditions improved based 
on experience with Mobius® bioreactor
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 Increased agitation rate 

 Increased cell density of inoculation

 Replaced micro sparger with an open-pipe sparger
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Microscopic evaluation of cells
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Stirred glass bioreactor

Mobius® 3L 
bioreactor

Run CR2

Run CR3

Run CR4
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Western blot analysis of VLPs using three markers
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Successful use of Mobius® bioreactor for VLP 
production

 Successful growth of Sf9 insect cells and infection with baculovirus for 
production of VLP vaccine using Mobius® 3L disposable bioreactor

 Comparable cell and VLP properties between disposable and glass 
bioreactors

 Reproducible performance of the disposable bioreactor was seen with 
identical results for three separate cell culture runs
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Clarification

Centrifugation
 Lab models used early on

 Well suited for large-scale 
production

 High capital expense

 Shear

Depth filtration
 Well suited for smaller vaccine 

batches

 Easier to scale

 Lower cost

 Disposable

 Gentle treatment

 Simpler process development

 Wide choice of depth filters
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Clarification: throughput data

Disposable capsule filters
Polygard® CN, nominal pore sizes of 10, 5, 0.6 and 0.3 μm

Pleated, all-polypropylene depth filters
Filter area: 17 cm2; Inlet flux: 988 LMH
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Clarification: recovery data

Unlike centrifugation, depth filtration resulted in ~70% DNA clearance
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Concentration of clarified VLP harvest

Pellicon® cassettes

Two different ultrafiltration membranes

 300 kD composite regenerated cellulose (Ultracel® membrane, “CRC”)

 100 kD polyethersulfone (Biomax® membrane, “PES”)

Similar process conditions employed

 4-5x concentration factor

 Loading: 72 L/m2; Feed flux: 480 LMH; TMP: 1 bar; Pfeed: 0.6-0.9 bar; 
Pretent: 1.1-1.4 bar
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Concentration of clarified VLP harvest – results
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Polygard® CN depth filters and Pellicon® cassettes 
with Ultracel® membrane offered best results
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Clarification

 Filter-only clarification train can be used without compromising 
recovery yield of VLPs. 

 Filter cascade composed of a Polygard® CN 5 μm filter followed by a 
0.3 μm depth filter showed the highest recovery of HCV-VLP, 
improving on centrifugation/2° depth filtration

 Moderate DNA removal with depth filtration was seen

UF/DF

 Pellicon® cassette with 300 kD regenerated cellulose membrane 
offered the best combination of recovery and purification



Typical VLP-based vaccine process
Insect cell / baculovirus VLP production platform

UF/DF Baculovirus
Inactivation

Purification
Chromatography

Media and Inoculum 
Preparation

Cell growth in Bioreactor
Virus Inoculation

Bioburden
Reduction

Primary
Clarification

Sterile 
Filtration

Polishing
Chromatography

24

UF/DF



Purification strategy
Anion exchange chromatography (AEX) resins used
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Batch adsorption experiments (bind-elute)

 Fractogel® and two Eshmuno® prototypes approach target of 2 BV LRV
 Yield increases with increasing ligand density for Eshmuno® prototypes
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Batch adsorption experiments
(flow-through)

 Inadequate performance in pure flow-through mode; Similar trends with 
ligand density

Adopted strategy: collect the flow-through fraction, then wash/elute the resin 
to recover more material
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Column experiments
Breakthrough curves for dynamic binding capacity

 10% dynamic binding capacity ranges at 900-1300 ng VLP / mL of 
packed resin

 The Eshmuno® series has about 30% higher DBC compared to 
Fractogel®
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DOE of flow-through conditions: Fractogel® TMAE
Inputs: load NaCl (100/200/300 mM) and flow rate (100/200/400 cm/hr)
Responses: % VLP recovery and BV LRV

Higher flow rate
OR

Higher load conductivity
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Successful purification of VLPs using Fractogel®
and Eshmuno® AEX chromatographic resins

 Successfully purified VLPs using Fractogel® TMAE commercial resins and 
Eshmuno® QPX prototype resins

 Yield of >60% with ~2 LRV baculovirus can be achieved with a flow-
through/wash purification strategy for both resins

 Options to increase recovery or purification depending on product value by 
varying process conditions
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Optimum performance achieved
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Traditional lab 
process

New scalable 
process

Purity

Baculovirus clearance 94% 97.6%

DNA clearance DNA 99.9%

HCP clearance HCP 82%

Recovery by P30 ELISA

VLP recovery VLP < 10% ~ 65%
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Summary

 Successfully used Mobius® 3L disposable bioreactor for production of 
VLP-based vaccine in insect cell culture system

 Optimized downstream processing using Polygard® CΝ 5.00.3 μm 
depth filters followed by UF/DF using Pellicon® cassette with Ultracel®
300 kD membrane

 Purified VLP by using Fractogel® resins and Eshmuno® QPX prototypes

 Integrated all the above components to achieve recovery and impurity 
clearance in line with requirements
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