

Tetravalent Dengue Vaccine - Butantan Institute Developing Countries Vaccine Manufacturers Network Hanoi, Vietnam 7-9th, Ocotber, 2013

Dengue Epidemiology and Clinical Disease

- Mosquito-borne flavivirus disease tropical and subtropical areas
- The incidence of dengue has increased 30-fold over the last 50 years
- Up to 50-100 million infections annually in over 100 endemic countries

Dengue Vaccine Development

- Based on the complexity of dengue immunology and pathogenesis several challanges to vaccine development have been identified;
- In spite of these challenges, vaccine development has made remarkable progress in recent years, and the current dengue vaccine pipeline is advanced, diverse and, in overall, promising;

PROSPECTS FOR A DENGUE VACCINE

- Goals of Immunization
 - First, the vaccine must be protective against each of the four DENV serotypes;
 - Second, the DENV vaccine should provide lifelong protection;
 - Third, immunization should be safe and well tolerated;
 - Fourth, universal coverage should be a goal in endemic regions;
 - Fifth, the cost of the vaccine must be affordable to the countries most in need of it.

 The production of a live attnuated tetravalent dengue vaccine in Brazil is the result of a partnership between the Laboratory of Infectious Diseases at The National Institutes of Allergy and Infectious Diseases - NIH and Butantan Institute.

A live attenuated dengue vaccine approach was chosen by NIH for several reasons:

- First, live vaccines are expected to stimulate both cellular and humoral immune responses, therefore are able to induce a strong memory response and durable immune response;
- Second, LA vaccines for other related flaviviruses such as yellow fever and Japanese encephalitis virus have been successfully developed;
- 3) Third, LA vaccines can be very economical to produce, helping to ensure that the countries most in need of a dengue vaccine will have access.

LA Tetravalent Dengue Vaccine Goals

1) Immunogenic and Efficacious

- It must confer protective immunity against all four DENV serotypes (Protect against disease from <u>ANY</u> DENV infection)
- Elicit an appropriate immune response: Must contain, rather than promote, virus growth and not trigger excessive tissue pathology or enhance transmission

2) Safe

- For vaccinee (with minimal local and systemic reactogenicity)
- For community (not transmissible via mosquito)
- Stable (genetic and potency stability)

Attenuation strategies for dengue virus vaccine candidates

Attenuation strategies for dengue virus vaccine candidates

Attenuation strategies for dengue virus vaccine candidates

Attenuation Strategies for Dengue Viruses

Pre-Clinical Summary of the Monovalent Candidate Vaccines (US)

SCID-HuH-7 mice

The candidate vaccine viruses were attenuated, replicating to a peak titer from 10^{0.9} up to 10^{2.4} PFU/mL

Rhesus macaques

- Low/undetectable levels of viremia (10^{1.0} to 10^{1.3} PFU/mL)
- Immunogenic

Mosquitoes

- Vaccine viruses have restricted ability to infect the midgut and to cause a disseminated infection (*Ae. Aegypti - Toxorhynchites splendens*)
- Ae. albopictus fed on viremic subjects vaccine virus was not recovered from any mosquitoes

Clinical Summary of the Monovalent Candidate Vaccines (US)

- The monovalent candidate vaccines have been evaluated in more than 750 volunteers in US and were found to be both safe and strongly immunogenic when administered as a single subcutaneous dose of 10³ PFU/mL
- Vaccinees did not develop a dengue-like illness
- Local reactogenicity was minimal in all subjects
- The most common systemic AEs observed were mild transient neutropenia, asymptomatic non-pruritic rash, and headache

Serology Summary of the Monovalent Candidate Vaccines (US)

- Vaccine virus was recovered from the blood of subjects
- Viremia ranging from 10^{0.5} PFU/mL to 10^{1.6} PFU/mL, significantly lower than the viremia found after wild-virus infection
- Seroconversion rates were:

 rDEN1∆30: 94%
 rDEN2/4∆30: 100%
 rDEN3∆30/31: 95%
 rDEN3-3´4∆30: 80%
 rDEN4∆30: 93%
 rDEN4∆30-200,201:95%
- Seroconversion at Study Day 28 or 42 compared with Day 0.

Clinical evaluation of tetravalent admixtures

- Flavivirus-naïve adults in Baltimore, MD or Burlington, VT
- Single subcutaneous dose
- 10³ pfu of each vaccine serotype. Potency = 3,3,3,3.
- Clinical follow-up every other day for first 16 days
- Serum for neutralizing antibody on days 28 and 42

Vaccine	Component								
TV-001	DEN1 ₄ 30	DEN2/4∆30	DEN3-3'D4∆30	DEN4∆30					
TV-002	DEN1∆30	DEN2/4∆30	DEN3-3'D4∆30	DEN4∆30-200,201					
TV-003	DEN1∆30	DEN2/4∆30	DEN3∆30/31	DEN4 ₀ 30					
TV-004	DEN1∆30	DEN2/4∆30	DEN3∆30/31	DEN4∆30-200,201					

Tetravalent Evaluation: flavivirus-naïve adults Neutralizing antibody response - single dose

Vaccine			Component	
TV-001	DEN1Δ30	DEN2/4Δ30	DEN3-3'D4∆30	DEN4∆30
TV-002	DEN1∆30	DEN2/4Δ30	DEN3-3'D4∆30	DEN4∆30-200,201
TV-003	DEN1∆30	DEN2/4∆30	DEN3∆30/31	DEN4∆30
TV-004	DEN1∆30	DEN2/4∆30	DEN3∆30/31	DEN4∆30-200,201

		% seroconverted (PRNT ₆₀ \geq 10)			Mean peak titer (GMT) (PRNT ₆₀ ≥ 10)					
Vaccine	N	DEN1	DEN2	DEN3	DEN4	DEN1	DEN2	DEN3	DEN4	
TV-001	20	80	65	60	95	54	39	36	154	
TV-002	20	80	60	75	90	118	41	31	32	
TV-003	20	100	50	85	100	62	44	36	65	
TV-004	20	75	50	85	85	36	17	124	32	
					Higher dose of DEN2 component?					

Is seroconversion later than day 42?

Tetravalent Evaluation: flavivirus-naïve adults Neutralizing antibody response – single dose

Tetravalent Evaluation: flavivirus-naïve adults Neutralizing antibody response – single dose

Vaccine			Component	
TV-001	DEN1Δ30	DEN2/4∆30	DEN3-3'D4∆30	DEN4∆30
TV-002	DEN1∆30	DEN2/4∆30	DEN3-3'D4∆30	DEN4∆30-200,201
TV-003	DEN1∆30	DEN2/4∆30	DEN3∆30/31	DEN4∆30
TV-004	DEN1Δ30	DEN2/4∆30	DEN3Δ30/31	DEN4∆30-200,201
TV-005	DEN1∆30	DEN2/4Δ30 (10X)	DEN3∆30/31	DEN4∆30

		% seroconverted (PRNT ₆₀ \geq 10)				Mean peak titer (GMT) (PRNT ₆₀ ≥ 10)				
Vaccine	N	DEN1	DEN2	DEN3	DEN4		DEN1	DEN2	DEN3	DEN4
TV-001	20	80	65	60	95		54	39	36	154
TV-002	20	80	60	75	90		118	41	31	32
TV-003	20	100	50	85	100		62	44	36	65
TV-004	20	75	50	85	85		36	17	124	32
TV-005	20	80	60	80	100		40	44	35	70

Tetravalent Evaluation: TV-003

Single dose adverse events

Adverse event	LATV (n=40)	Placebo (n=16)	<i>p</i> -value
njection site:			
Erythema	5.0%	6.3%	1.0000
Pain	0.0%	6.3%	0.2857
Tendemess	5.0%	0.0%	1.0000
Induration	5.0%	0.0%	1.0000
<u>Systemic</u> :			
Fever ^a	0.0%	0.0%	n/a
Headache	45%	25%	0.2300
Rash	55%	0.0%	< 0.0001
Neutropenia ^b	2.5%	6.3%	0.4935
Elevated ALT ^c	5.0%	0.0%	1.0000
Myalgia	7.5%	6.3%	1.0000
Arthralgia	0.0%	6.3%	0.2857
Retro-orbital Pain	5.0%	0.0%	1.0000

^a Oral temperature ≥ 100.4 °F

^b Absolute neutrophil count < 1,500/mm³

° Defined as > 1.25 X the clinical laboratory upper limit of normal

Tetravalent Evaluation: TV-003 expanded study Single dose

Serum collection for PRNT

TV-003: Days 28, 42

TV-003 e: Days 28, 56, 90

		% seroconverted (PRNT ₅₀ ≥ 10)			Mean peak titer (GMT) (<u>PRNT₅₀ ≥</u>				
Vaccine	N	DEN1	DEN2	DEN3	DEN4	DEN1	DEN2	DEN3	DEN4
TV-003	20	100	50	85	100	106	64	42	86
TV-003 e	38	92	76	97	100	63	40	85	151
Sanofi (3 dose)*	12 adult	67	75	67	82				
GSK (2 dose)**	18 adult	83	100	83	68				

* Poo, J et al. 2011. Ped. Inf. Dis. J. 30:e9. Potency = 5,5,5,5. Three doses administered to flavivirus-naive adults

** Thomas, SJ, et al 2013. AJTMH 88:73-88. Potency = 5,5,5,5 Two doses of F-19 administered to flavivirus-naïve adults

Tetravalent Evaluation: TV-003 expanded study Neutralizing antibody response - flavivirus-naïve adults

* Poo, J et al. 2011. Ped. Inf. Dis. J. 30:e9. Potency = 5,5,5,5 Three doses administered to flavivirus-naive adults

** Santangelo, J. 2012 World Vaccine Manufacturing Congress, Washington, DC. High potency = 4,4,5,5. Two doses administered to flavivirus-naïve adults

*** Thomas, SJ, et al 2013. AJTMH 88:73-88. Potency = 5,5,5,5 Two doses of F-19 administered to flavivirus-naïve adults

Tetravalent Evaluation: TV-003 expanded study Neutralizing antibody response - flavivirus-naïve adults

Significant number of TV-003 e subjects had peak antibody titers after study day 90

Serum	% volunte	eers with peak ant	ibody titers on in	dicated day
collection	DEN1	DEN2	DEN3	DEN4
Day 28	44	23	62	45
Day 56	25	40	24	32
Day 90	14	13	0	5
Day 150	6	3	0	10
Day 180	11	20	14	8
	Tet	ra- ∎ Tr	i- 🗖 Bi	
TV-003 e			74 7 9	N = 38 – Day 180 1 Dose
Inviragen	29	53		N = 17 – Day 120 ^{2 Doses}
0%	20%	40% 60	% 80%	100%

Tetravalent Evaluation: Two dose studies Viremia and Rash

- 91 tetravalent vaccine subjects received second dose (day 180)
- Second dose admixture same as primary dose

		First	dose	Secon	d dose
Vaccine	N	No. with viremia	No. with rash	No. with viremia	No. with rash
TV-001	12	8	6	0	0
TV-002	11	7	3	0	0
TV-003	10	8	7	0	0
TV-004	13	10	10	0	0
TV-005	11	10	5	1	1
TV-003 e	34	25	19	0	0
	91	75%	55%	1%	1%

TV-005 Subject 130: First dose: DEN4 viremia on one day (one plaque) Second dose: DEN3 viremia on one day (one plaque) + Mild rash Trivalent response D1, D3, D4 after first dose

Conclusions from tetravalent studies in flavivirus-naïve adults (US)

- 1) The tetravalent mixtures are safe.
- 2) Viremia remained very low in flavivirus naïve adults.
- 3) Up to 79% of naïve subjects had a tetravalent antibody response (1 dose)
- 4) Booster immunization?

Most subjects appear to be "protected" against boost

Vaccine viremia was not seen after second dose

May increase antibody durability

6) Probably a one dose vaccine.

Dengue Vaccine Produced by Butantan Institute

• The same TV-003 tetravalent vaccine has been produced

by Butantan as lyophilized formulation

- Design and Objective
 - Phase II, Stepwise (A and B), Randomized, Double-blind and Controlled Clinical Trial to Evaluate the Safety and Immunogenicity of a Lyophilized Formulation of the Dengue
 - 1,2,3,4 (attenuated)

Study Vaccine

• The study vaccine is the lyophilized formulation produced and formulated at Butantan Institute

• Comparator

 The Butantan formulation will be compared to the liquid formulation produced and formulated according to the protocol of LID/NIAID/NIH) and to a placebo

Vaccine potency

 Both vaccine formulations contain 10³ plaque forming units (PFU) per 0.5 mL dose, of each virus

Route

• Vaccines and placebo will be administered subcutaneously

Study Population 300 healthy male and non pregnant female / From18 to 59 years of age / With and without previous exposure to dengue

Step A

•50 without previous exposure to dengue

•Volunteers will be randomly assigned to receive either the lyophilized formulation (Butantan), or the liquid formulation (NIH), or the placebo

•Volunteers will receive a second dose, six months after first vaccination as part of an exploratory assessment

•If no safety stopping criteria is identified, then Step B will be initiated

Step B

- 250 volunteers with and without previous exposure to dengue
- Volunteers will be randomly assigned to receive either one dose of the lyophilized formulation from Butantan, or the placebo

Primary Endpoints

- The primary safety endpoint frequency of vaccine-related AEs up to Day 21
- The primary immunogenicity seroconversion rate = PRNT₅₀ ≥1:10 for each dengue serotypes on Days 28, 56, 90, or 180

Secondary Endpoints

- Unsolicited AE after Day 21 up to Day 180 after vaccination
- The frequency, quantity, and duration of viremia for each of the vaccine viruses
- The frequency of monovalent, divalent, trivalent or tetravalent immune response, at Days 28, 56, 90 and 180 after vaccination

Exploratory Endpoint

Cellular immune response

Follow-up

- Five year follow-up period after their inclusion in the study
- Annually Immunology testing
- Assessment of suspected and confirmed dengue cases

- Immunology Testing
 - Serum plaque reduction neutralizing antibody assay using established protocols (NIH) will be performed at Adolfo Lutz Institute
 - Cellular immune response Scholl of Medicine of University of São Paulo
- Clinical Sites (3) University of São Paulo

Av. Vital Brasil, 1500 - Butantã São Paulo – SP Zip Code - 05503-900 (+ 55 11) 2627-9372 www.butantan.gov.br

Thank you

Alexander R. Precioso alexander.precioso@butantan.gov.br