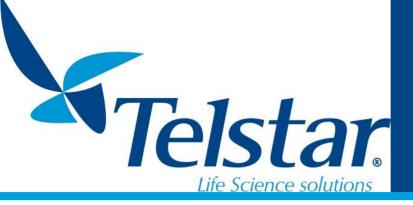



SISTEMAS DE TRATAMENTO DE ÁGUA PARA PRODUÇÃO DE VACINAS

DADOS PESSOAIS



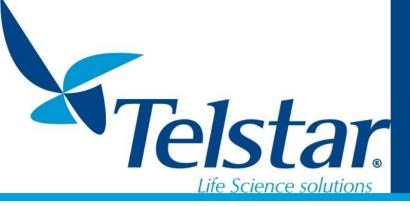
ANA MARIE KANETO

GERENTE DE PROJETOS

E-MAIL: AKANETO@TELSTAR.EU

FONE: +55 11 98717-0655

EMPRESA GLOBAL



ÁGUA PARA INJETÁVEIS

ÁGUA PARA INJETÁVEIS

Definição:

Água para injetáveis é o insumo utilizado na preparação de medicamentos para administração parenteral, como veículo ou na dissolução ou diluição de substâncias ou de preparações.

FONTE: Farmacopéia Brasileira

ww.telstar-valueservices.com

RESOLUÇÃO RDC 17, DE 16 DE ABRIL DE 2010

TÍTULO VI

ÁGUA PARA USO FARMACÊUTICO CAPÍTULO I

EXIGÊNCIAS GERAIS PARA SISTEMAS DE ÁGUA PARA USO FARMACÊUTICO

Art. 527. Os sistemas de produção, armazenamento e distribuição de agua para uso farmacêutico devem ser <u>planejados</u>, instalados, validados e mantidos de forma a garantir a produção de agua de qualidade apropriada.

ÁGUA PARA INJETÁVEIS

CAPÍTULO II

ESPECIFICAÇÕES DE QUALIDADE DA ÁGUA

SEÇÃO III

ÁGUA PARA INJETÁVEIS

Art. 536. A agua para injetáveis deve cumprir com as especificações das farmacopeias aceitas pela ANVISA.

FARMACOPÉIAS:

- ✓ United States Pharmacopeia (versão vigente 35ª Edição 2012)
- ✓ European Pharmacopeia (versão vigente 7ª Edição 2012)

CAPÍTULO III MÉTODOS DE PURIFICAÇÃO DA ÁGUA

SEÇÃO IV PRODUÇÃO DE ÁGUA PARA INJETÁVEIS

Art. 549. Os seguintes itens devem ser considerados no planejamento de um sistema de produção de água para injetáveis.

I – a qualidade da água de alimentação;

II – a especificação exigida de qualidade da água;

III- a otimização do tamanho do gerador de água, afim de evitar frequentes inícios/paradas do sistema; e

IV – as funções de descarga e esvaziamento.

CAPÍTULO IV

SISTEMAS DE PURIFICAÇÃO, ARMAZENAMENTO E DISTRIBUIÇÃO DE ÁGUA

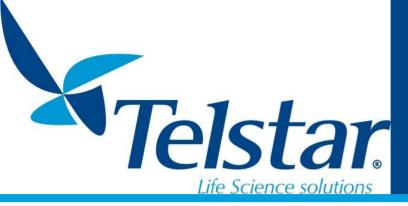
SEÇÃO I

GERAL

Art. 550. O sistema de armazenamento e distribuição deve ser configurado para evitar a recontaminação da agua apos o tratamento e deve ser submetido a uma combinação de monitoramento *online* e *offline* para garantir que a especificação apropriada da agua seja mantida.

SEÇÃO II

MATERIAIS QUE ENTRAM EM CONTATO COM SISTEMAS DE ÁGUA PRA USO FARMACÊUTICO

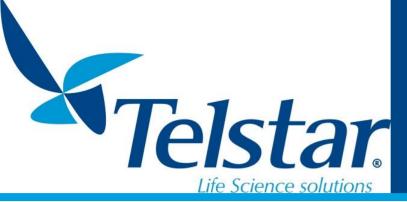

Art. 551. Os materiais que entram em contato com a agua para uso farmacêutico, incluindo a tubulação, válvulas e armações, lacres, diafragmas e instrumentos devem ser selecionados para satisfazer os seguintes objetivos:

- ✓ Compatibilidade
- ✓ Prevenção de Vazamento
- ✓ Resistência à Corrosão

Continua

- ✓ Acabamento Interno Liso
- ✓ Soldagem
- ✓ Desenho de Flanges ou Juntas
- ✓ Documentação
- ✓ Materiais

SEÇÃO III


SANITIZAÇÃO DO SISTEMA E CONTROLE DA CARGA MICROBIOLÓGICA

Art. 552. Os equipamentos de tratamento de agua e os sistemas de armazenamento e distribuição utilizados para agua purificada e agua para injetáveis devem ser projetados a fim de evitar a contaminação microbiológica durante o uso e proporcionar o emprego de técnicas de sanitização ou esterilização do sistema apos intervenções para manutenção ou modificação.

Continua



Art. 553. Sistemas que funcionam e são mantidos em temperaturas elevadas, na faixa de 70 – 80°C, em geral, são menos suscetíveis a contaminação microbiológica do que sistemas mantidos em temperaturas mais baixas.

SEÇÃO IV

CAPACIDADE DE RECIPIENTES PARA ARMAZENAMENTO

Art. 554. A capacidade do recipiente de armazenamento deve ser determinada com base nos seguintes requisitos:

I - e necessário estabelecer uma capacidade intermediaria entre a capacidade de geração do sistema de agua e o consumo nos diferentes pontos de uso;

Continua =

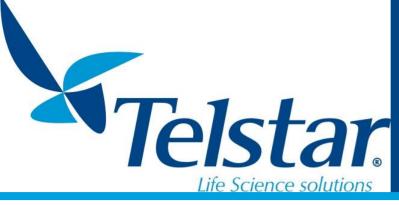
www.telstar-valueservices.com

II - o equipamento de tratamento da agua deve funcionar continuamente por períodos significativos de tempo para evitar ineficiência e desgaste, o que ocorre quando o equipamento é ligado e desligado com frequência; e

III - a capacidade deve ser suficiente para oferecer reserva de curto prazo em caso de falha do equipamento de tratamento da agua ou de incapacidade de produção devido a sanitização ou ciclo de regeneração.

SEÇÃO V

CONTROLE DE CONTAMINAÇÃO DE RECIPIENTES PARA ARMAZENAMENTO


Art. 555. Os seguintes itens devem ser considerados para o controle eficiente de contaminação:

I - o espaço entre a superfície da agua e a tampa do reservatório e uma área de risco em que gotas de agua e ar podem entrar em contato em temperaturas que incentivam a proliferação de microrganismos;

II - os reservatórios devem ser configurados para evitar zonas mortas em que possa haver contaminação microbiológica;

Continua www.telstar-valueservices.com

tífic i Tecnològic, Orbital 40, 08226, Terrassa (Barcelona). N.I.F.: A-61648358. IRM Barcelona, Tomo 30729, Folio 154, Hc

III - filtros de ventilação são colocados em reservatórios para permitir que o nível interno de liquido flutue. Os filtros devem reter bactérias, devem ser hidrofóbicos e devem ser configurados idealmente para permitir teste de integridade no local. Testes off-line também são aceitáveis; e

IV - quando são utilizadas válvulas de alivio de pressão e discos de ruptura em reservatórios para protegê-los contra pressurização excessiva, tais componentes devem ter desenho sanitário.

SEÇÃO VI


EXIGÊNCIAS PARA TUBULAÇÃO DE DISTRIBUIÇÃO DE ÁGUA

Art. 556. A distribuição de água purificada e de água para injetáveis deve ser realizada utilizando preferencialmente um anel de circulação continua.

Art. 557. A filtração não deve ser utilizada nos anéis de distribuição ou em pontos de uso para controlar a Biocontaminação. Tais filtros podem mascarar a contaminação do sistema.

Continua

Art. 558. Quando trocadores de calor são empregados para aquecer ou resfriar água para uso farmacêutico dentro de um sistema, devem ser tomadas precauções para evitar que o equipamento de aquecimento ou resfriamento contamine a agua.

Art. 559. As bombas de circulação devem ter desenho sanitário que evitem a contaminação do sistema.

Art. 560. Utilização de técnicas de controle de bio-contaminação deve ser considerada isoladamente ou em conjunto, a fim de evitar a utilização de água fora das especificações estabelecidas.

MÉTODOS DE PRODUÇÃO DA ÁGUA PARA INJETÁVEIS

MÉTODOS DE PRODUÇÃO DA ÁGUA PARA INJETÁVEIS

	BR	USP	EP	JP
		Destilação e osmose reversa		Destilação,
		(RO) são os únicos		Osmose Reversa
	Pode ser obtida por	métodos		e/ou
	Destilação ou	aceitáveis listados	Destilação é o	Ultrafiltração são
	processo	na USP para a	único método	os métodos
	equivalente ou	produção de água	aceitável para a	aceitáveis para a
Método de	superior à	para injecção	produção de água	produção de água
Produção de	destilação.		para injecção.	para injecção.
Água para		Mas, o FDA aceita		
Injetáveis	A ANVISA dá	ainda a instalação	A Destilação é o	O Pharmaceuticals
	preferência a	de um Sistema de	único método	and Medical
	Destilação , mas,	Ultrafiltração na	aceito pelo EMEA.	Devices Agency
	não impede outros	produção de Água		(PMDA) aceita
	métodos.	para Injetáveis		todos os métodos
		para minimizar a		citados na
		ocorrência de		farmacopeia.
		endotoxinas.		

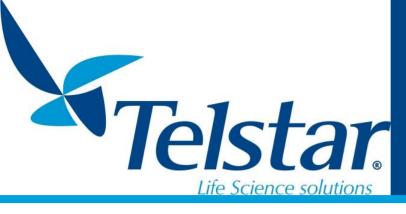
BR: Farmacopeia Brasileira

USP: United States Pharmacopeia


EP: European Pharmacopeia JP: Japanese Pharmacopeia

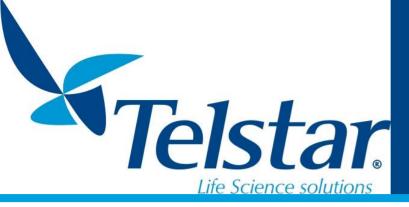
CRITÉRIOS DE ACEITAÇÃO DA ÁGUA PARA INJETÁVEIS

	BR	USP	EP	JP
TOC	<0,5 mg/L	< 500 ppb	< 0.5 mg/l	< 0,5 mg/L
CONDUTIVIDADE	< 1,3 μS/cm a 25°C	< 1.3 μS/cm a 25°C	< 1.1 µS/cm a 20°C	< 2.1 μS/cm a 25°C
ENDOTOXINAS	0,25 EU/ mL	0,25 EU/ mL	0,25 EU/ mL	0,25 EU/ mL
CONTAGEM TOTAL DE MICROORGANISMO S	< 10 UFC/mL	< 10 UFC / 100 mL	< 10 UFC / 100 mL	< 10 UFC/mL
pH	-	5 - 7	-	-


BR: Farmacopeia Brasileira

USP: United States Pharmacopeia

EP: European Pharmacopeia JP: Japanese Pharmacopeia

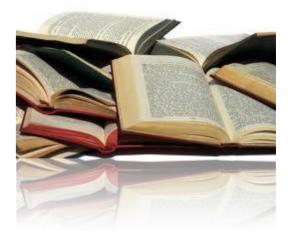


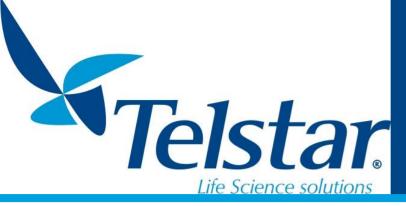
PORQUE VALIDAR?

PARA GARANTIR QUE TODAS AS ETAPAS DE PRODUÇÃO SEJAM CONFIÁVEIS E ATENDAM AOS CRITÉRIOS DE QUALIDADE DEFINIDOS PELA EMPRESA E AOS CRITÉRIOS ESTABELECIDOS PELAS "BPF" (cGMPs).

O QUE DEVE SER VALIDADO?

TODOS OS ITENS QUE IMPACTAM NA QUALIDADE FINAL DO PRODUTO.





DEFINIÇÃO DE VALIDAÇÃO

O procedimento de estabelecer evidência documentada que dê um alto grau de confiança de que um processo específico produzirá constantemente um produto de acordo com suas especificações pré-definidas e atributos de qualidade.

Fonte: FDA

TÍTULO V

VALIDAÇÃO

CAPÍTULO III

VALIDAÇÃO

SEÇÃO I

ABORDAGEM PARA VALIDAÇÃO

Art. 463. Existem duas abordagens básicas para a validação – uma baseada em evidências obtidas por meio de testes (validação concorrente e prospectiva) e uma baseada na análise de dados históricos (validação retrospectiva).

SEÇÃO II

ESCOPO DA VALIDAÇÃO

Art. 465. Deve haver um sistema eficiente e apropriado, incluindo estrutura organizacional e da documentação, pessoal suficiente e recursos financeiros para a realização da validação no prazo previsto.

Art. 468. A validação deve ser realizada de um modo estruturado, de acordo com procedimentos e protocolos documentados.

CICLO DE VIDA DA VALIDAÇÃO

CICLO DE VIDA DA VALIDAÇÃO

O ciclo de vida da validação é composto pelas seguintes etapas:

- 1) Requerimento de Usuário (RU)
- 2) Plano Mestre de Validação (PMV)
- 3) Plano de Validação (PV)
- 4) Qualificação de Projetos (QP)
- 5) Factory Acceptance Test (FAT)
- 6) Site Acceptance Teste (SAT)
- 7) Comissionamento

Telstar. Life Science solutions

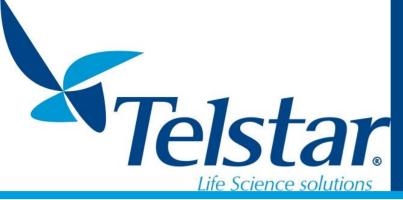
VALIDAÇÃO

- 8) Análise de Riscos (AR)
- 9) Qualificação de Instalação (QI)
- 10) Qualificação de Operação (QO)
- 11) Qualificação de Desempenho (QD)
- 12) Relatórios de Qualificação
- 13) Relatório Final de Qualificação
- 14) Matriz de Rastreabilidade (MR)

MANUTENÇÃO DO STATUS DE VALIDADO

Para que o status de validado seja mantido, o mínimo necessário é:

- 1) Controle de Mudança;
- 2) Plano de Calibração;
- 3) Plano de Manutenção;
- 4) Revisão Periódica;
- 5) Requalificação / Revalidação


DOCUMENTAÇÃO BASE PARA VALIDAÇÃO

Para que um Sistema de Tratamento de Água para Injetáveis possa ser validado são necessários os seguintes documentos:

- 1) Especificação Técnica e Funcional
- 2) Fluxogramas de Engenharia (as-built)
- 3) Diagramas Elétrico e Pneumático
- 4) Manuais de Operação (controle de acesso, sequência de operação, parâmetros, alarmes, intertravamentos)
- 5) Procedimentos Operacionais Padrão (POP)

Continua

- 6) Desenhos Dimensionais dos Equipamentos
- 7) Layout da Área
- 8) Layout com Fluxo de Pessoas, Materiais e Resíduos
- 9) Especificação de Materiais de Construção e de Equipamentos;
- 10) Certificados de Materiais de Construção;
- 11) Certificados de Calibração;
- 12) Isométricos
- 13) Cálculos de Simultaneidade



REQUERIMENTO DE USUÁRIO

É um documento que apresenta definições claras e objetivas dos aspectos relevantes para aquisição, implantação e qualificação de um bem.

CAPÍTULO VI

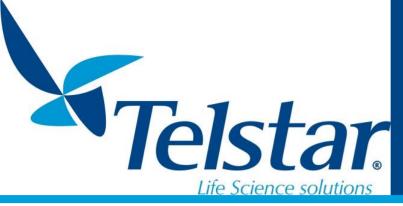

PLANO MESTRE DE VALIDAÇÃO

Art. 484. PMV deve conter os elementos chave do programa de validação. Deve ser conciso e claro, bem como conter, no mínimo:

- I uma política de validação;
- II estrutura organizacional das atividades de validação;
- III sumario/relação das instalações, sistemas, equipamentos e processos que se encontram validados e dos que ainda deverão ser validados (situação atual e programação);

Continua

IV - modelos de documentos (ex: modelo de protocolo e de relatório) ou referência a eles;


V - planejamento e cronograma;

VI - controle de mudanças; e

VII - referencias a outros documentos existentes.

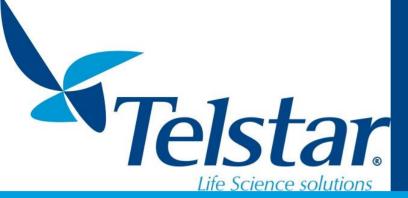
www.telstar-valueservices.com

CAPÍTULO IX

ESTÁGIOS DA QUALIFICAÇÃO

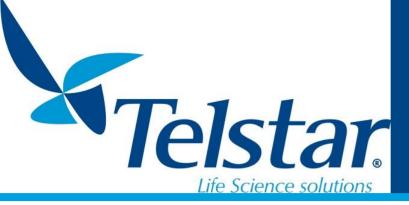
SEÇÃO I

QUALIFICAÇÃO DE PROJETO (QP)


Art. 499. A qualificação de projeto deve fornecer evidencias documentadas de que as especificações do projeto foram atendidas de acordo com os requerimentos do usuário e as Boas PrÁticas de Fabricação.

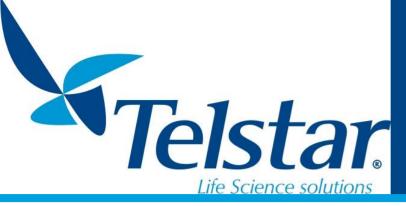
FACTORY ACCEPTANCE TEST (FAT)

Teste de Aceitação de Fábrica (TAF) - Inspeção e/ou testes executados no fornecedor antes do envio para o cliente. O fornecedor testa o sistema em conformidade com os requerimentos de usuário, e especificações para mostrar que o sistema está aprovado para ser testado e instalado no local definitivo.



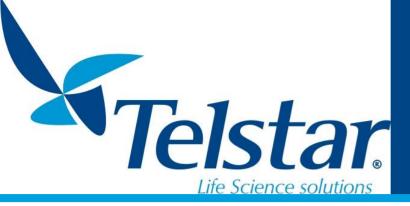
SITE ACCEPTANCE TEST (SAT)

Teste de Aceitação em Campo(TAC) – Inspeção e/ou testes para garantir que o sistema/equipamento ou componentes, uma vez instalado em condições reais, está funcionando corretamente.



COMISSIONAMENTO

Processo documentado de verificação de que os equipamentos e sistemas estão instalados de acordo com as especificações, colocando-os em operação, e verificando o seu bom funcionamento.



ANÁLISE DE RISCO (AR)

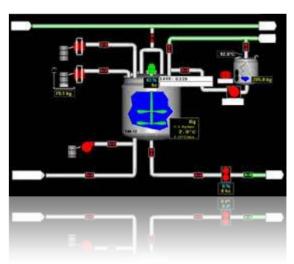
É o processo qualitativo ou quantitativo de ligar a probabilidade de ocorrência e a gravidade dos danos.

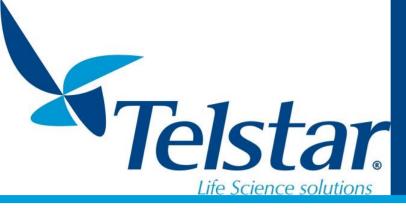
A análise de riscos tem como propósito estabelecer uma maneira de combinação da severidade, probabilidade de ocorrência e detectabilidade de falhas, reduzindo estas a um nível aceitável. Severidade refere-se às possíveis consequências de um risco.

SEÇÃO II

QUALIFICAÇÃO DE INSTALAÇÃO (QI)

Art. 500. A qualificação de instalação deve fornecer evidencias documentadas de que a instalação foi finalizada de forma satisfatória.





SEÇÃO III

QUALIFICAÇÃO DE OPERAÇÃO (QO)

Art. 503. A qualificação operacional deve fornecer evidencias documentadas de que as utilidades, sistemas ou equipamentos e todos os seus componentes operam de acordo com as especificações operacionais.

SEÇÃO IV

QUALIFICAÇÃO DE DESEMPENHO (QD)

Art. 507. A qualificação de desempenho deve fornecer evidencias documentadas de que as utilidades, sistemas ou equipamentos e todos os seus componentes demonstrem desempenho consistente de acordo com as especificações de uso em rotina.


Devem ser consideradas no processo de qualificação possíveis variações sazonais que venham a afetar a qualidade da água para uso farmacêutico.

Uma abordagem de três fases deve ser usada para satisfazer o objetivo de comprovar a confiabilidade e robustez do sistema em operação, durante um período prolongado. Geralmente essas fases são denominadas **Fase 1**, **Fase** 2 e **Fase 3**.

	FASE 1	FASE 2	FASE 3
Periodicidade	2 semanas, todos os dias	2 semanas, todos os dias	Um ano a contar a partir do término da FASE 2
Pontos de Amostragem	Todos + Água de Alimentação	Todos + Água de Alimentação	Rotina, estabelecidos em POP
Utilização para Fabricação	Não Permitido	Permitido	Permitido
Aprovação	Não é justificável a apresentação de resultados fora de especificação ou problemas técnicos	Desvios não significativos devem ser investigados	Desvios não significativos devem ser investigados
POP	É permitido ajuste	É permitido ajuste	Deve estar implantado e aprovado

Após a conclusão da qualificação do sistema de água, deve ser realizada revisão dos dados obtidos, adotadas ações corretivas e adequação dos procedimentos operacionais, caso necessário. Após a revisão, deve ser estabelecido um plano de monitoramento de rotina.

REFERÊNCIAS

- ANVISA RESOLUÇÃO RDC 17, DE 16 DE ABRIL DE 2010 BOAS PRÁTICAS DE FABRICAÇÃO DE MEDICAMENTOS
- ANVISA GUIA DE QUALIDADE PARA SISTEMAS DE PURIFICAÇÃO DE ÁGUA PARA USO FARMACÊUTICO
- FDA GUIDE TO INSPECTIONS OF HIGH PURITY WATER SYSTEMS (High Purity Water Systems (7/93))
- FDA INSPECTION TECHNICAL GUIDE WATER FOR PHARMACEUTICAL USE
- EMEA NOTE FOR GUIDANCE ON QUALITY OF WATER FOR PHARMACEUTICAL USE
- USP UNITED STATES PHARMACOPEIA 35^a EDIÇÃO
- EP EUROPEAN PHARMACOPEIA 7ª EDIÇÃO
- JP JAPANESE PHARMACOPEIA 16^a EDIÇÃO
- FARMACOPÉIA BRASILEIRA 5^a EDIÇÃO
- WHO TRS 970 (2012) ANEXO 2 GOOD MANUFACTURING PRACTICES: WATER FOR PHARMACEUTICAL USE
- ANVISA GUIA DE VALIDAÇÃO DE SISTEMAS COMPUTADORIZADOS
- ISPE ISPE Baseline® Guide, Vol. 5: Commissioning and Qualification

OBRIGADA