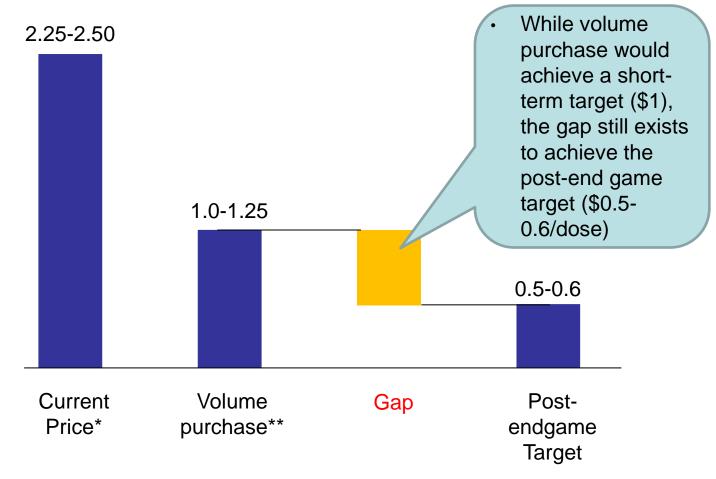


Medium and long term IPV product development strategies

DCVMN meeting, Mexico City 10&11 July 2013

BILL& MELINDA GATES foundation

Presentation overview


- Current status of prequalified IPV
- Target price of affordable IPV
- IPV development roadmap
- Conclusion

Status of prequalified IPV

Bilthoven Biologicals (NVI), Netherlands	6 December 2010
GSK, Belgium	5 August 2010
Sanofi Pasteur, France	9 December 2005
Statens Serum Institut,	23 December 2010
Denmark	
Fillers of inactivated trivalent bulks	In the pipeline

Development of Affordable IPV : Context

IPV price per dose (USD)

* UNICEF tender price (November 2012).

IPV Development Roadmap

Approach	Current	Mid-term (~2016)	Long-term (~2020)		
1 Adjuvant		 IM, Adjuvant (1) Aluminum hydroxide 	 IM, Adjuvant (others) Aluminum hydroxide Novel adjuvant 		
Practional dose		 ID, fractional dose (3) 	 ID, fractional dose (others) 		
Combination	 IM, aP-hexa (2) 	 IM, aP-hexa 	 IM, aP-hexa IM, wP-Hexa 		
IPV Strain	Salk (4)Sabin (Japan)	 Salk (2) Sabin (China/Indonesia) 	 Salk (others) Sabin (Others) Alternate IPV strain Virus-Like Particle 		
Froduction technology	 Serum containing media with Vero cell 	 Serum containing media with Vero cell 	 Serum-containing media Animal Component Free (ACF) media New cell line (e.g., 		

PER. C6)

Middle-/Long-Term Strategy: Adjuvant

Aluminum

Description • Aluminum hydroxide may enable 2-4 fold dose reduction of IPV

Progress toTwo fold dose reduction was
confirmed with Sabin-IPV, through
two rat potency studies and Phase
I/IIa infant study in Poland
(Intravacc/WHO)

- Rat studies showed a similar (or higher) effect (2-4 fold) with Salk-IPV but there is no human study yet
- Ongoing work to optimize and develop aluminum adjuvant S-IPV (Preliminary results ~early 2014)

Novel Adjuvant

- Animal studies showed novel adjuvant (e.g., o/w emulsion, Lipid-A, IStP) may enable higher (5~10 fold) dose reduction
 - BMGF supports work to explore different adjuvant options (~early 2014)
 - Regulatory requirements for these adjuvants (esp. for pediatric use) need to be determined

First product · 2016-17 available

2 Middle-Term Strategy: Intradermal IPV

Needle and syringe

Description

 Intradermal administration of IPV enables five fold dose reduction

Jet injectors and microneedles (Patch)

 ID device and patch will significantly improve the ease of use

Progress to date

- Clinical trial requirements for IPV label change is being finalized with NRAs
- Most likely, two non-inferiority trials will be conducted by WHO (late 2013)
- Device comparison study in Cuba ongoing (~Q4 2013)
- CDC, WHO, and BMGF plan four studies with different schedules and devices
- ID patch was shown to induce sufficient immunogenicity (to IM) in primates with full-dose
- Other micro-needles
 technologies expected

First product • 2015~ available

2016-17

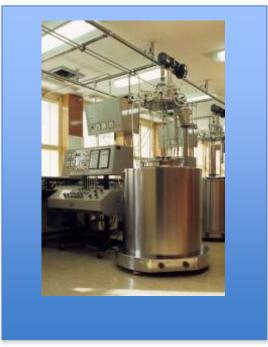
Icong-Term Strategy: Low-Cost Hexavalent

Hexavalent

Description

- Currently, two IPV-containing hexavalent vaccines on the market (GSK, Sanofi) with aP component
 - Multiple suppliers are developing wP-based, low cost hexavalent
 - No prequalified product yet

Progress to
date•Development is still ongoing for more affordable wP hexavalent
vaccines


First product • 2018~ available

Middle-/Long-Term Strategy: Safer IPV

	sIPV Development	Alternate Strains	Virus Like Particle
Description	 IPV produced from Sabin strain Safer to produce, less containment issues 	 IPV produced from genetically modified strains ("safer than Sabin" strains) 	 Stabilized poliovirus capsid No containment required
Progress to date	 Japanese NRA licensed two products (Aug '12) Kunming finished phase III trial WHO/Intravacc completed phase I/IIa 	 WHO selected candidate strain for evaluation of production feasibility (May '12) 	 technical feasibility demonstrated further evaluation ongoing
First product		· 2018~	· 2018~

- available
- 2016 (Indonesia)
 2017~ (Others)

sIPV Development: WHO/Intravacc (RIVM) Collaboration

 GMP production and pre-clinical tests completed

 Phase I/II in infants (Poland) showed 95-100% seroconversion rate against Salk and Sabin virus with high GMT

* Panacea, SII (India), CNBG, Sinovac (China), LGLS (Korea), and Birmex (Mexico)

- Selected six partners* for the technology transfer
- Two partners (Panacea, SII) already started a tech. transfer project

Phase I/IIa Study in Poland: Seroconversion rate

Selected by Advisory Panel for further development

Doses		Sabin		Salk			
		Туре І	Type II	Type III	Type I	Type II	Type III
Salk IPV (40:8:32) n=20		100%	100%	100%	100%	100%	100%
Sabin IPV	Low (5:8:16) n=20	100%	100%	100%	100%	100%	100%
	Mid (10:16:32) n=20	95%*	100%	100%	100%	100%	100%
	High (20:32:64) n=20	100%	100%	100%	100%	100%	100%
Sabin IPV (adj)	Low (2.5:4:8) n=20	100%	100%	100%	95%	100%	100%
	Mid (5:8:16) n=20	100%	100%	100%	100%	100%	100%
	High (10:16:32) n=20	100%	100%	100%	100%	100%	100%

*One subject had very high prevaccination titer (>10.5) and intermediate post-vaccination titer (6.83 log2 titer)

Long-Term Strategy: ProductionOptimization

Production Optimization

ACF media

Description

 Preliminary research showed the production process can be improved 2-3 fold with Animal Component Free (ACF) media, which increases the cell densities

New Cell line

- Production of IPV with PER.
 C6, a new cell line derived from human retina cells (by Crucell/J&J)
- Potentially increase production yield 10-30 fold

Progress to date

- WHO/Intravacc are negotiating a new memorandum of understanding (MoU), including the further research on the production optimization
- Higher yield confirmed at a labscale production model
- Commercial scale production
 and development is planned

First product • 2018~ available 2018~

Conclusions

- Major progress in supplying and developing affordable IPV:
 - The volume purchasing will reach a short-term target of \$1/dose. However, further technological innovation is needed to achieve the ultimate GPEI target (\$0.5-0.6/dose)
 - Sufficient evidence is now available for technical feasibility of ID administration (earliest 2014) and adjuvant (earliest 2016)
 - Preliminary results from other technologies suggests the feasibility of further technical innovation (such as VLP, and production optimization). They may enable more IPV supply options, facilitate containment and likely reduce the IPV price in the long run (around 2020)

THANK YOU

BILL& MELINDA GATES foundation

