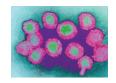


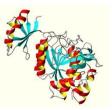
# Vaccine Processing – an overview


Dr. Mats Lundgren

**GE Healthcare Life Sciences** 

Imagination at work

### How Vaccines are manufactured


#### **Bacteria based**



Virus based



Protein based



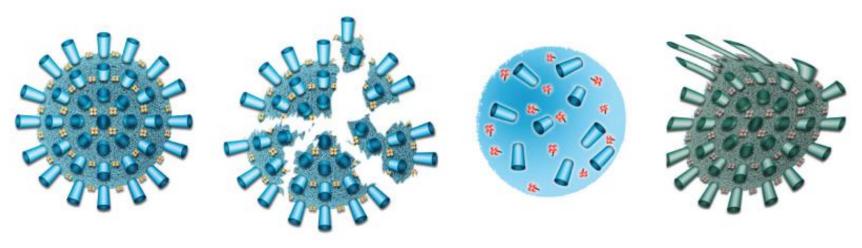
Polysaccharide based



DNA based



The Manufacturing process


#### Cell culture / Fermentation



#### Analysis (QC/QA)

Number and order of the different steps depends on the specific vaccine production

### Different types of marketed influenza vaccines



Whole virus

Split virus

Subunit

Live attenuated



## The evolution of vaccine processes

1st generation processes: Focus on upstream, optional inactivation

2nd generation processes: Separations based on centrifugation, filtration

Currently developed processes:

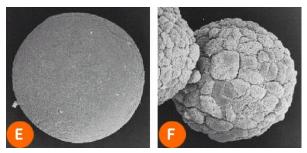
Quality based approach: Quality by Design

Focus on process understanding of entire process incl. purification and virus safety



# **Outline of presentation**

Cell substrates for virus production Cell culture using Microcarriers Downstream purification of vaccines Modernizing legacy Vaccine processes Conclusions




# Cell substrates for virus production



# Selecting a cell line for virus production

- •Cell substrate evolution from primary to diploid to continuous cell lines...
- •Modern options: Vero, MDCK, EBx™, AGE, PER.C6™ ...
- •Requirements
  - Suitable for GMP production
  - Good safety track record
  - Good virus propagation
  - Broadly and highly permissive
  - Scalable to high volume production



from: Pereira et al. Biotech Bioeng; 2004; 85; 5



# MDCK and Vero cells

|   | MDCK                                                                                                                           | Vero                                                                                                                                                            |
|---|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| + | <ul> <li>Higher productivity</li> <li>Technically easier</li> <li>Less risk for propagation of adventitious viruses</li> </ul> | <ul> <li>Platform cell line (can be used<br/>for several virus vaccines)</li> <li>Good safety record</li> <li>Used for several marketed<br/>vaccines</li> </ul> |
| - | <ul> <li>Potential tumorigenicity/<br/>oncogenicity</li> <li>New cell substrate</li> <li>Restricted to influenza</li> </ul>    | <ul> <li>Lower productivity</li> <li>Technically challenging</li> <li>Potential propagation of<br/>adventitious viruses</li> </ul>                              |



## Virus safety

#### **EP citation:**

"Seed lots/cell banks. The master seed lot or cell bank is identified by historical records that include information on its origin and subsequent manipulation. Suitable measures are taken to ensure that no extraneous agent or undesirable substance is present in a master or working seed lot or a cell bank."



# **Cell culture using Microcarriers**



# Scale up of adherent cell cultures

#### Increase volume



#### Increase number of units



Genetic Engineering News, 2007

One 2500 L bioreactor with a carrier concentration of 3 g/L (Cytodex<sup>™</sup> 1) provides the same surface area as 40 000 roller bottles (850 cm<sup>2</sup>/bottle)



# Viruses produced in microcarrier cultures

Adenovirus Bovine rhinotrachteritis Endogenous C type Equine rhinopneumonitis Foot and mouth Group B arboviruses HAV Herpes Influenza

| Japaneese encephalitis |
|------------------------|
| Marek's                |
| Papova virus           |
| Polio                  |
| Polyoma                |
| Pseudorabies           |
| Rabies                 |
| RSV                    |
| Rous sarcoma           |
|                        |

Rubella Sendai SV40 Sindbis Small pox Vaccinia Vesicular stomatitis



## Cell culture media and serum

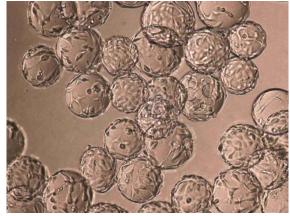
Serum - Ensure quality, traceability and origin

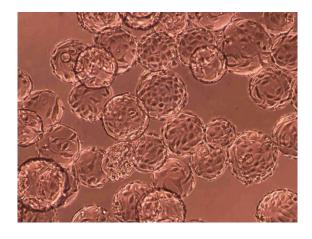
**Classical media** 

Animal origin free media

Complex media containing hydrolysates

Chemically defined media






# The effect of cell culture media







Medium 1

Medium 2

Medium 3



#### Bioreactors – Fixed vs Disposabled Control and scalability



(ge)

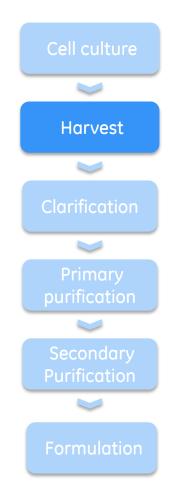




#### Large scale vaccine production Baxter Biosciences

EC GMP licensed BSL3 (Sept 2004) 20 million doses plant Vero cells on Cytodex<sup>™</sup> in protein free medium – 6000L scale

Presented at the conference "Influenza Vaccines for the world", Vienna 2006




# Downstream purification of vaccines

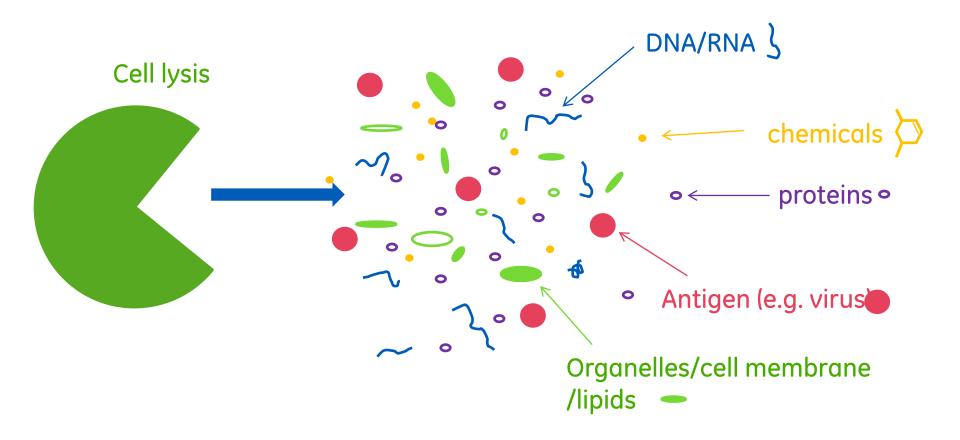


#### Harvest

- Lytic virus
- Non-lytic virus
  - Detergent
  - Mechanical disruption / Homogenization
  - Osmotic shock
  - Freeze-thaw

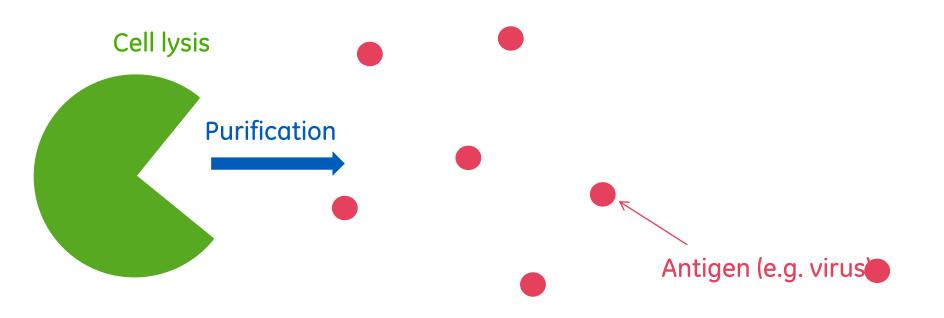





## Safety and quality is priority

#### **Regulatory requirements**

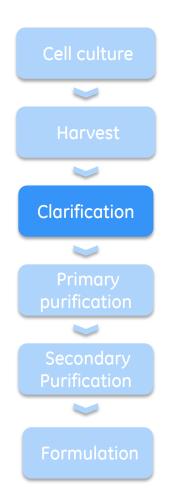
- Safe vaccine with no or minimal adverse effects
- Effective dose
- Stability
- Process control
- Reproducable process




### Impurity challenges after lysis



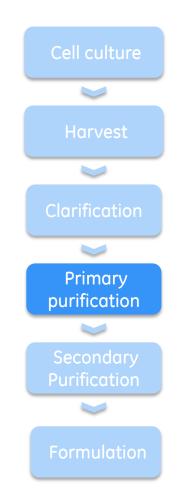



### Goal with purification





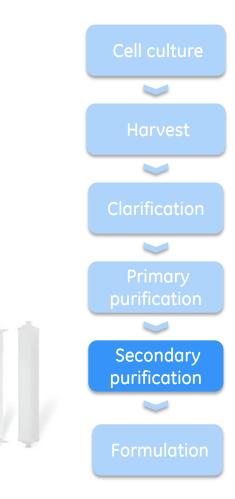
#### Clarification


- Filtration
  - Normal flow
  - Tangential flow
- Centrifugation





#### **Primary purification**


- Tangential flow filtration (TFF)
- Density gradient centrifugation
- Precipitation
- Chromatography



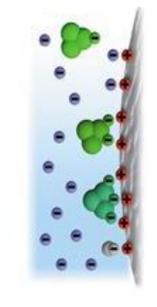


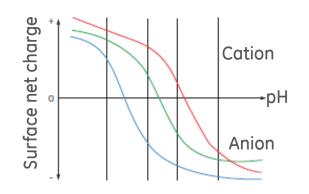
#### Secondary purification

- Density gradient centrifugation
- Selective precipitation
- Chromatography
  - IEX, MM, AC, HIC, SEC
  - Bead format (Packed bed)
  - Membrane format (Capsule)



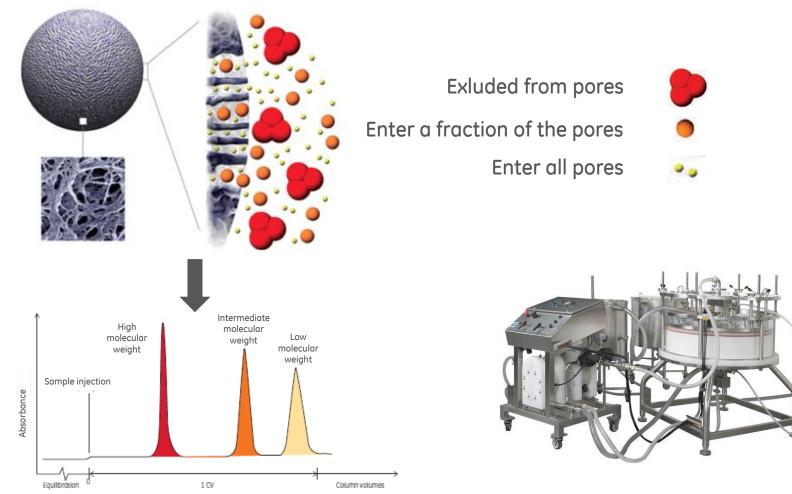



## Ion exchange chromatography


#### Anion exchange chromatography

 (-) Negatively charged molecules binds to (+) positively charged ligands

#### Cation exchange chromatography


 (+) Positively charged molecules binds to (-) negatively charged ligands







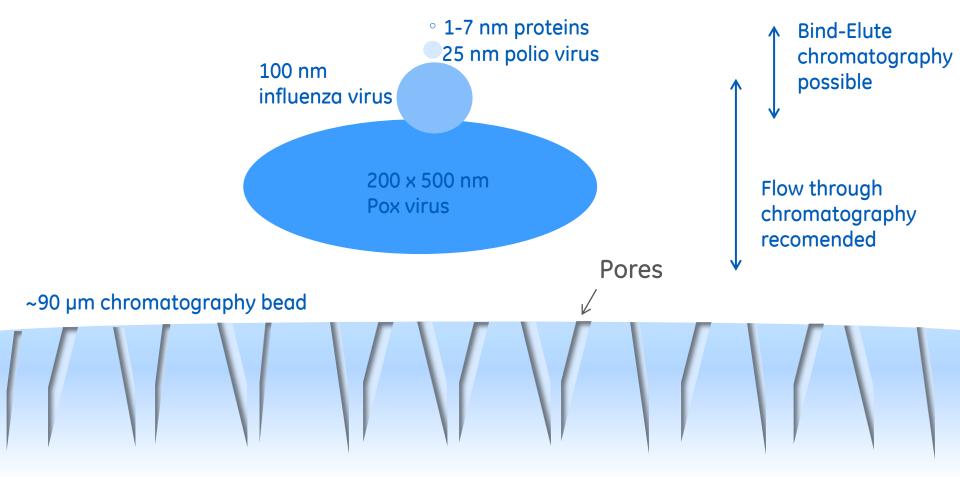
## Size exclusion chromatography





## Affinity chromatography

#### Specific binding


Few affinity resins available for vaccines

- Agarose based affinity resin for adeno associated virus
- Pseudo affinity resins for influenza
  - sulphated cellulose
  - sulphated dextrane





# Chromatograpic purification of large molecules can be challenging





## Core bead chromatography



• Host cell proteins and DNA fragments bind to the core and viruses stay in the void.



#### **Process example**





## The history of Polio vaccine processes

- 1955: Inactivated Polio vaccine (IPV) launched (Salk Type)
- 1960: Attenuated Polio vaccine launched (Sabin type)
- 1960s: Collaboration between Prof. Van Wezel (RIVM/NVI Netherlands) and GE (former Pharmacia) around microcarrier cultures of primary monkey cells.
- 1970s: New IPV purification method using chromatography resins
- 1980s: Switch to Vero cell production
- 2010s: Updating the IPV processes using modern technology







# Modernizing legacy Vaccine processes



### A Modern Solution for Acellular Pertussis Vaccine

## Whole-cell (wP) - Acellular Pertussis (aP)

#### wP Vaccines

- 70 year old technology based on killed *B. pertussis* strains
- High protection efficiency ~78%

Associated with side effects and safety concerns

The reactogenicity of wP vaccine was thought to be too high to permit routine use in older children, adolescents and adults.

#### aP Vaccines

#### Introduced in 1990's

aP contain ≥1 of the separately purified antigens: pertussis toxin (PT), filamentous hemagglutinin (FHA), pertactin (PRN), and fimbriae(FIM) type 2 and 3.

aP is now the dominant type in the industrialized world

aP containing vaccines with reduced concentrations of the antigen have been formulated for use in adolescents and adults



## **Project Goal**

## **Traditional process**

# Chinese pharmacopeia requirement and current situation

- Contain 2 antigens:
  - Pertussis toxoid (PT), Filamentous Hemagglutinin (FHA)
- Purity >85% (SDS-PAGE)

Yield around 10%

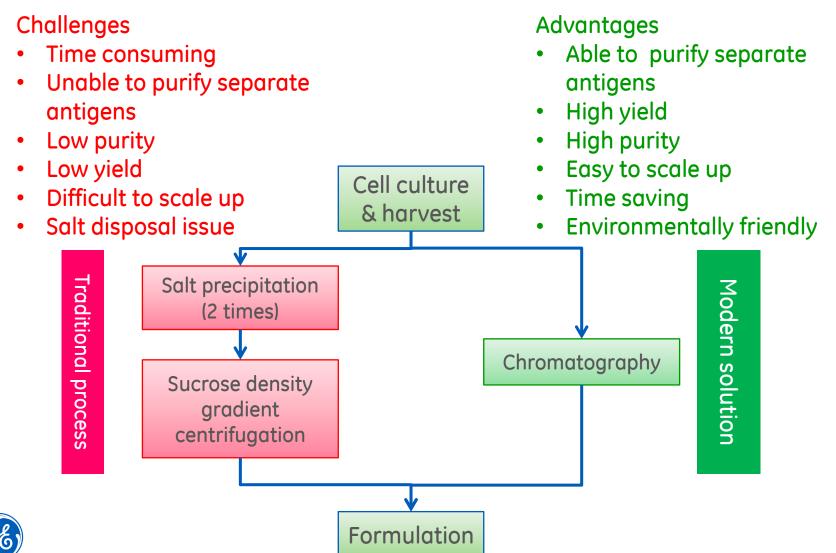
Lack of stable antigen quantitative assay

#### **Current Project**

Develop a modern process for pertussis vaccine

• Contain 3 antigens:

Pertussis toxoid (PT), Filamentous Hemagglutinin (FHA ) Pertactin (PRN)


• Purity >95% (SDS-PAGE)

#### Yield >30%

Establish quantitative antigen determination using Biacore™ platform



#### Traditional Process vs. Modern Solution



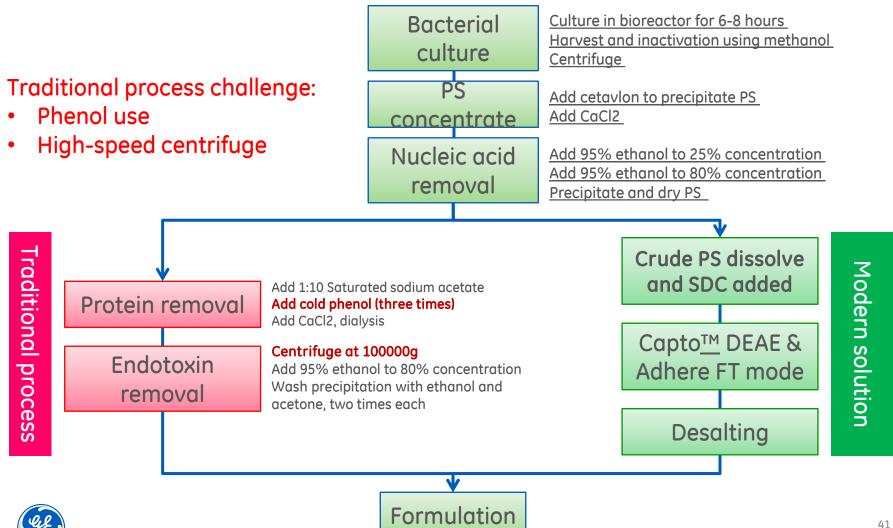
#### **Process Highlights**

- 1. Modern process to produce PT, FHA & PRN using bioprocess friendly, easily scalable, new generation chromatography platform.
- **2.** Environmentally friendly.
- **3**. Increase purity from 85% to >95%.
- 4. Reduce manufacture time from month to days.
- 5. Recovery increased from 10% to 30%.
- 6. Establish a sensitive, stable platform using Biacore to quantify PT & FHA.



#### Modern Process for Meningococcal Vaccine

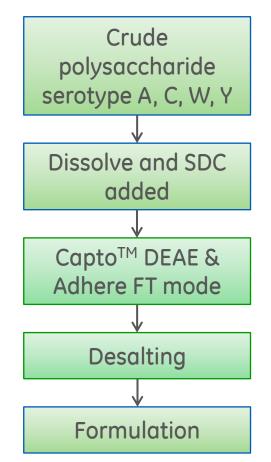
#### Meningococcal Vaccine




13 clinically significant serotypes. A, B, C, W-135, Y responsible for 90% of global cases

Vaccine for A, C, W, Y are produced using capsular polysaccharide (PS), conjugant technology to enhance immunogenicity



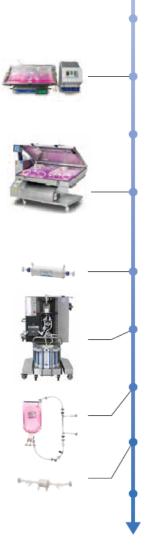

### Traditional Process vs. Modern Solution



#### Modern solution for Meningococcal Vaccine A,C,W,Y

Advantages vs. traditional process:

- No phenol use in process, benefit environment & operator's health & safety
- Easy to scale up
- Simple flow-through mode
- All 4 serotypes using same process
- Protein/DNA/endotoxin in products meet requirement






# Live Influenza virus production



#### Influenza process overview



Cell inoculum From static cell factories

Seed culture (10 L) WAVE Bioreactor™ 20/50 system Jpstream

)ownstream

Cell transfer Bead to bead transfer

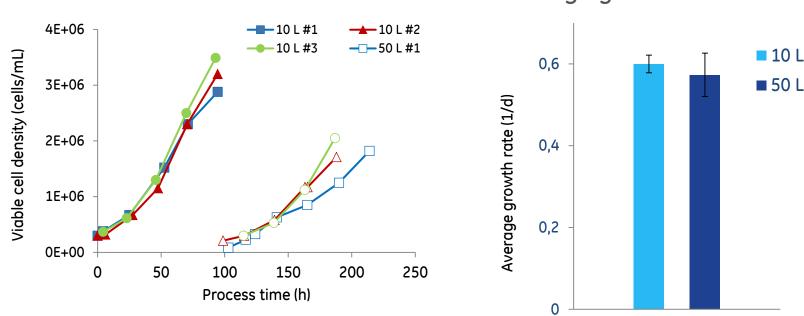
Production culture (50 L) WAVE Bioreactor 200 system

Clarification ULTA™ Prime GF

Chromatography ĂKTA™ ready system

Concentration and buffer exchange ReadyCircuit™ assemblies

Sterile filtration ULTA Pure HC


Virus analysis Biacore™ T200 and other methods Scale-up from small scale to pilot scale in single-use format

Comparison of culture performance in 10 L and 50 L microcarrier culture in rocking bioreactors

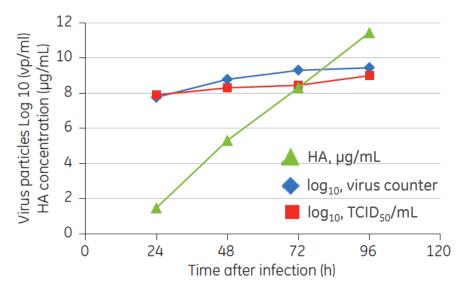
Downstream purification in flowthrough chromatography mode with Capto™ Q and Capto Core 700 chromatography media (resins)



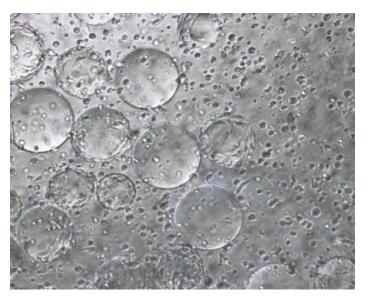
#### Cell growth in single-use bioreactor stage



Average growth rate


Bead to bead transfer was successful and cell growth was comparable at 10 L and 50 L scale




Cell concentration

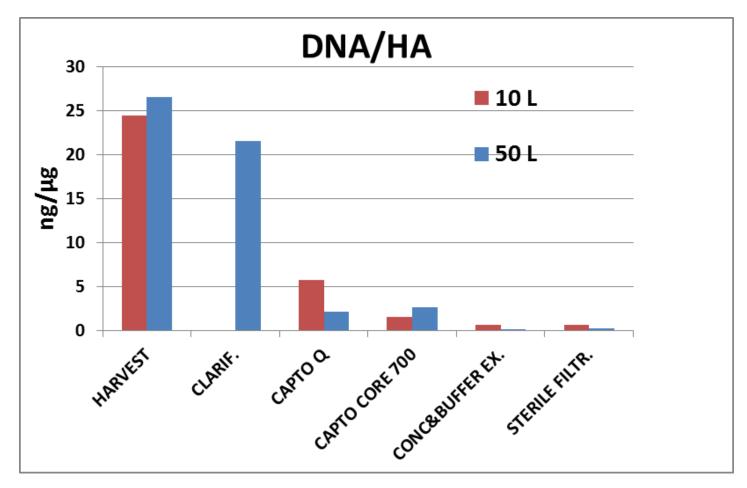
#### Virus growth kinetics

HA concentration and virus titer during culture



Cell morphology at time of harvest (96 h)

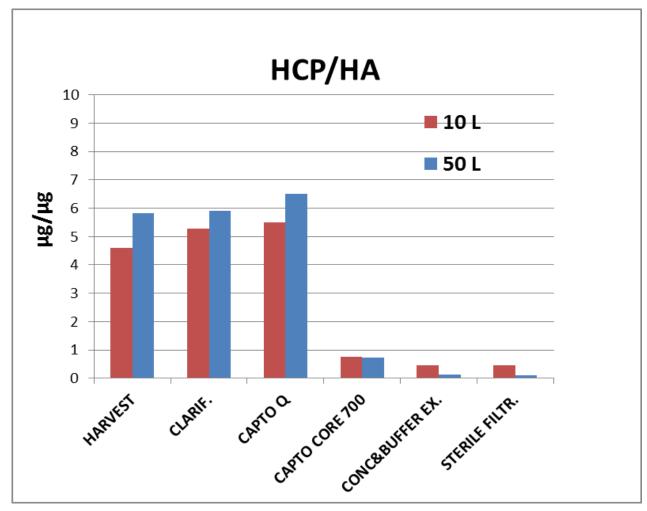



HA concentration at harvest was close to 12  $\mu$ g/mL and the virus concentration was > 10<sup>9</sup> infective units/mL



#### **Purification Workflow**

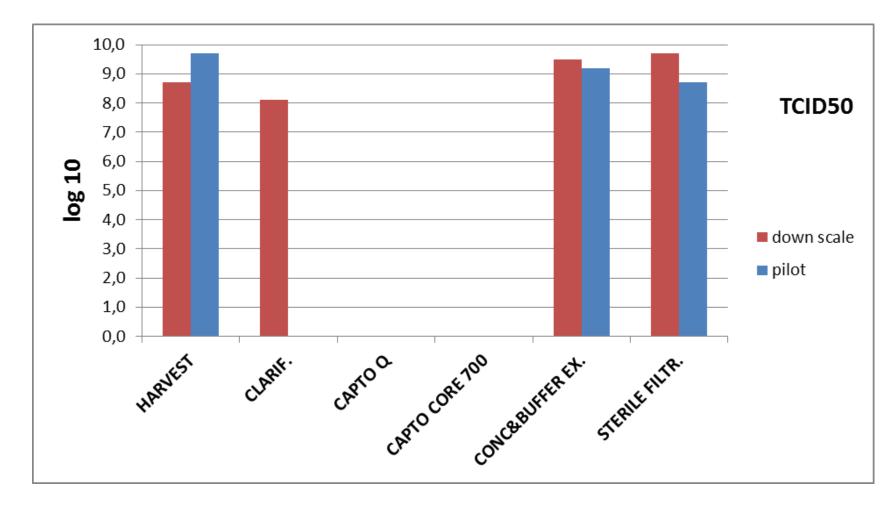
| NFF               | ULTA™ prime GF<br>Microcarrier and cell debris removal<br>Adjustment of conducitvity                     |
|-------------------|----------------------------------------------------------------------------------------------------------|
| Capto Q           | Capto™ Q – Flow through<br>Reduction of DNA and host cell proteins                                       |
| Capto<br>Core 700 | Capto Core 700 – Flow through<br>Reduction of host cell proteins                                         |
| CFF               | ReadyToProcess™ hollow fiber<br>Concentration, buffer exchange and removal of DNA and host cell proteins |
| SF                | ULTA pure HC<br>Sterile filtration                                                                       |
|                   | Sterile filtration                                                                                       |


#### **Purification results**



Capto<sup>™</sup> Q: Reduces host cell DNA




#### **Purification results**



Capto<sup>™</sup> Core 700: Reduces host cell protein



#### Virus infectivity



Process does not impair virus infectivity



#### Process summary

Estimation of doses per liter harvest, compared with WHO guidelines for protein and DNA impurities in influenza vaccine

|                                                 | Split-inactivated vaccine <sup>1</sup> | Nasal LAIV <sup>2</sup>                                      |
|-------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| Scale-up output/L harvest                       | 175 doses á 15 µg HA                   | 3075 doses á 107 TCID <sub>50</sub> units                    |
| Harvest volume to produce 10 <sup>6</sup> doses | 5760 L                                 | 325 L                                                        |
| Protein impurity <sup>3</sup>                   | 30 µg protein/15 µg НА                 | 1.5 $\mu$ g protein/10 <sup>7</sup> TCID <sub>50</sub> units |
| DNA impurity <sup>4</sup>                       | 3.0 ng/15 μg HA                        | 0.15 ng/10 <sup>7</sup> TCID <sub>50</sub> units             |

<sup>1</sup> Split-inactivated vaccine contains 3 strains á 15 µg/HA (e.g., 3 × 15 = > 45 ug HA/dose á 0.5 mL).

<sup>2</sup> Comparison is based on a commercially available specification for a nasal LAIV. A dose of 0.2 mL contains 10<sup>7</sup> fluorescent focus units, which is assumed to be equal to TCID<sub>50</sub> titer.

<sup>3</sup> WHO guideline for protein impurity: max. 100 µg protein/strain

 $^{\rm a}\,$  WHO guideline for DNA impurity: < 10 ng DNA/dose = 3.3 ng DNA/15  $\mu g$  HA.

Assuming a recovery of 25% for the overall process and a dose requirement of  $10^7 \text{ TCID}_{50}$ , more than 1.5 million doses of monovalent live attenuated influenza vaccine could be produced from a 50 L cell culture



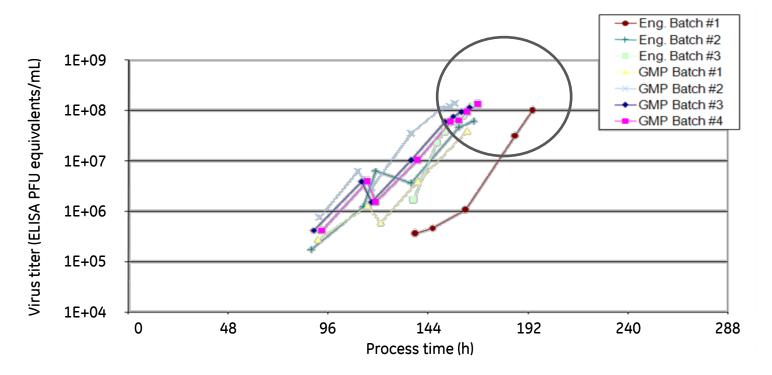
# Yellow fever virus propagation – from eggs to cells



#### GMP manufacturing of viral vaccine



Xcellerex™ XDR-50 bioreactor Vero cells (WHO-10-87)

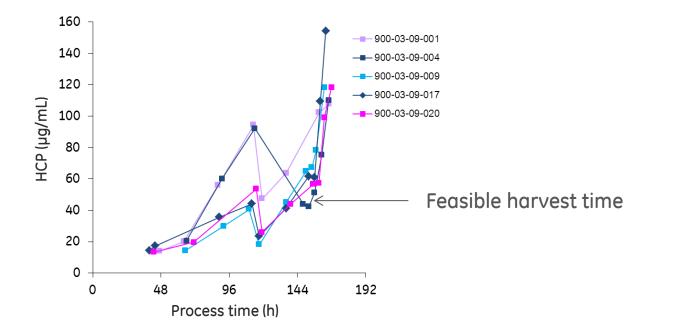

- Cytodex™ 1 microcarrier
- Serum free, animal componentfree medium

Yellow fever virus 17D



#### Virus production drain down refeed

PFU equivalents from Eng and GMP bioreactor runs




The process consistency was high and virus titers were similar between runs



#### Virus propagation and release of HCP

HCP content after ELISA analysis



A feasible time for harvest is before the HCP peaks, to facilitate downstream processing



## Conclusions



#### Conclusions



By modernizing legacy vaccine processes there can be improvements in:

- Yield
- Quality
- Scale-up
- Cost efficiency
- Environmental impact



#### Acknowledgement

Dr. Tian, Yang Michelle (Fast Trak, GE Healthcare Life Science) Dr. Zheng, Yongjian (Fast Trak, GE Healthcare Life Science) Dr. Lu, Lifang Lillian (Fast Trak, GE Healthcare Life Science) Tushar, Joglekar (Fast Trak India, GE Healthcare Life Science) Chen, Yongshuo (GE Healthcare Life Science) Liao, Yi Jazmine (GE Healthcare Life Science)

Li Xiaoling (Fast Trak, GE Healthcare Life Science) Dr. Sui, Lili (Fast Trak, GE Healthcare Life Science) Luo, Liang (GE Healthcare Life Science) Xie, Hongyan (GE Healthcare Life Science) Dr. Jia, Guodong (Fast Trak, GE Healthcare Life Science) Yang, Hongyan (Fast Trak, GE Healthcare Life Science) Dr. Lu, Lifang (Fast Trak, GE Healthcare Life Science) Wang, Jiyuan (Fast Trak, GE Healthcare Life Science) Yang, Jianjun (Fast Trak, GE Healthcare Life Science) Du, Qizhen (Fast Trak, GE Healthcare Life Science) Dr. Lundgren, Mats (GE Healthcare Life Science) Dr. Berg, Mikael (GE Healthcare Life Science) Larsson, Anders (GE Healthcare Life Science)



#### Acknowledgement



#### Uppsala team:

Lena Sandberg Peder Bergvall Camilla Estmer- Nilsson Christian Kaisermayer Ann-Christin Magnusson Christine Sund-Lundström Therese Lundberg Mats Lundgren Jakob Liderfelt Annika Morrison Elisabet Linde Åsa Eriksson Johanna Tschöp

Marlborough team: Geoff Hodge Patrick Guertin Ed Hayman Steve Turbayne Casey Cunningham Greg Mantenuto A. J. Theriault Chris Mach



#### Thank you!

www.gelifesciences.com

GE, imagination at work, GE monogram, and Global Star are trademarks of General Electric Company.

ÄKTA, Biacore, Capto, Cytodex, HyClone, ReadyCircuit, ReadyToProcess, Sephadex, ULTA, WAVE Bioreactor, and Xcellerex are trademarks of GE Healthcare Company or one of its subsidiaries.

HyperFlask is a trademark of Corning. Pluronic is a trademark of BASF.

© 2013-2015 General Electric Company – All rights reserved. First published Apr. 2013.

All goods and services are sold subject to the terms and conditions of sale of the company within GE Healthcare which supplies them. A copy of these terms and conditions is available on request. Contact your local GE Healthcare representative for the most current information.

GE Healthcare Bio-Sciences AB Björkgatan 30 751 84 Uppsala Sweden



