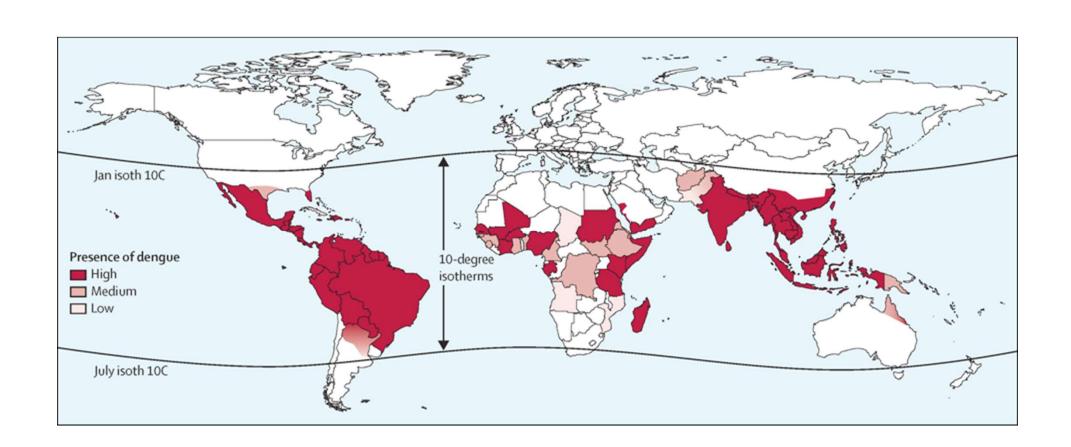
Where are we with dengue vaccines?

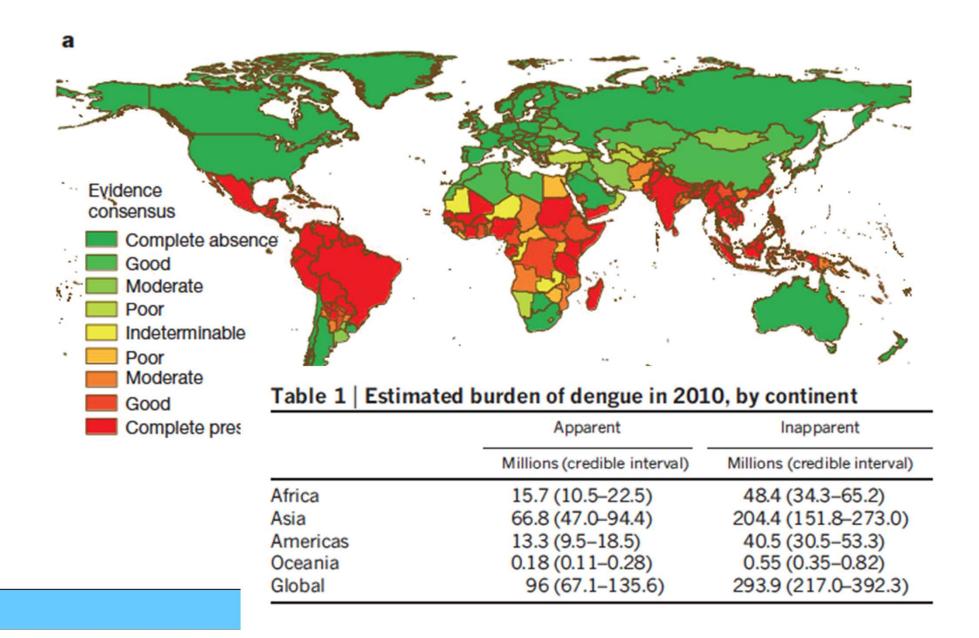
Annelies Wilder-Smith

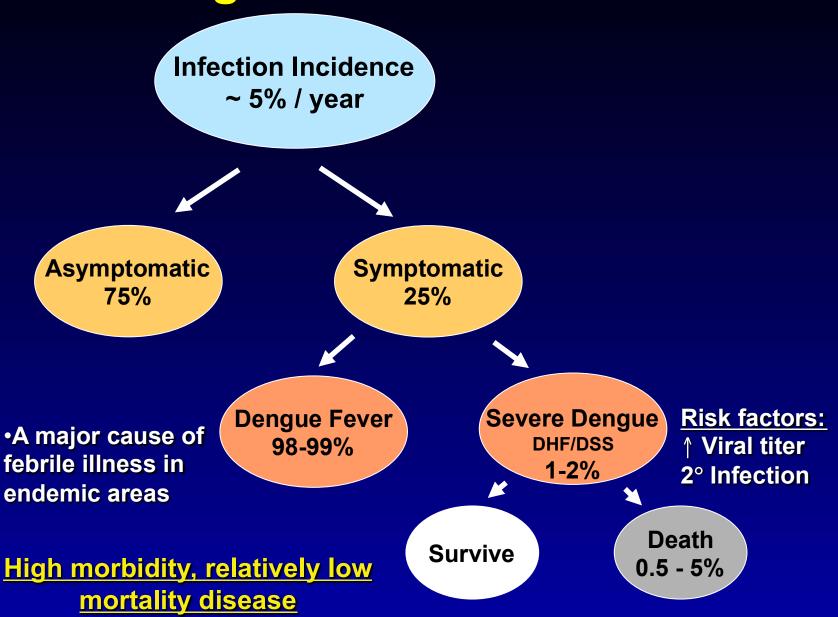
MD PhD MIH DTM&H FAMS FACTM FFTS

Professor, Lee Kong Chian School of Medicine, Singapore

President, ISTM

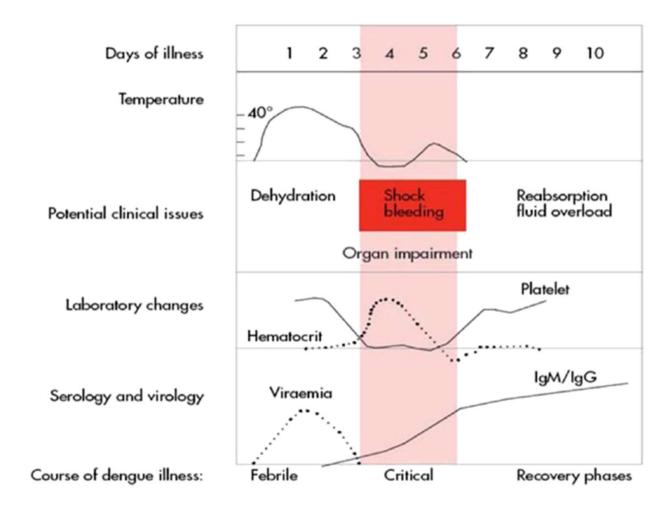

Senior Advisor, Dengue Vaccine Initiative Scientific Coordinator, DengueTools (funded by EU)



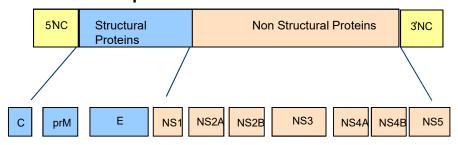

Dengue infections

Global burden of dengue

Dengue Virus Infection



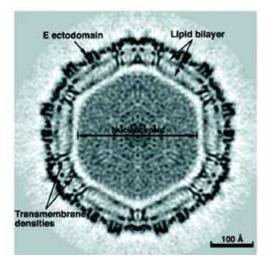
Dengue Hemorrhagic Fever



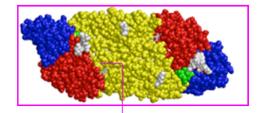
Time course

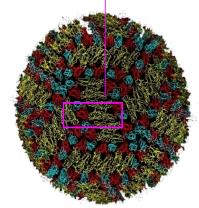
Dengue Virus

- Flavivirus (YF, JE, TBE, WN)
- •RNA Virus: 3 structural proteins & 7 nonstructural proteins

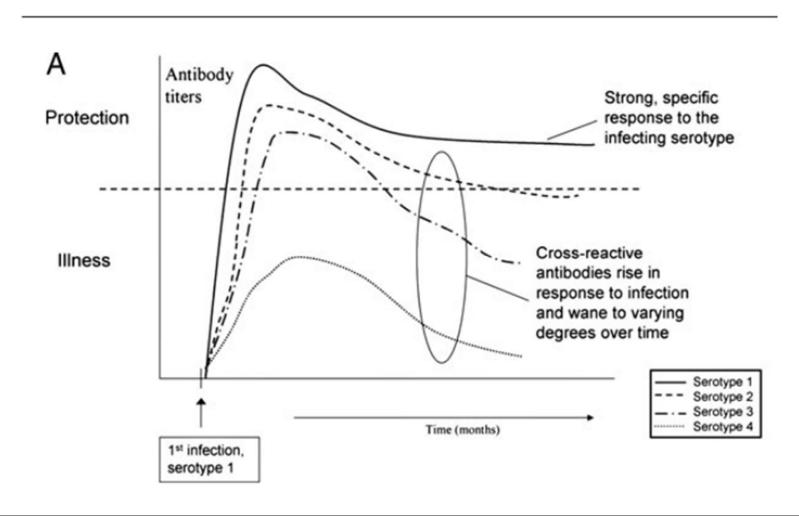

•4 close but genetically different serotypes

DEN-1


DEN-2


DEN-3

DEN-4


Zhang et al., 2003,

Cell 108, 717-725

Antibodies can be protective or destructive

Immunity

Monotypic immunity

Heterotypic immunity

Multitypic immunity

Additional hurdles

- Animal model
- True correlate of protection
 - Neutralizing antibody appears to be poor predictor
- Overcoming viral interference with a tetravalent vaccine (live)
- Role of cellular immunity

Dengue Vaccine

- High level country interest in a vaccine
- 30 year of development
- Robust vaccine pipeline
- First Phase 3 efficacy results in 2014
- First vaccine licensed in 2015

Competitive landscape, different stages

Preclinical

Phase I

Phase II

Vabiotech

Biological E. Limited

Pahang Technology Resources Sdn Bhd

Panacea Biotec

GSK TDEN-VPIV

Inactivated vaccine
Inactivated virus

Merck

DEN4-80E
Recombinant subunit
Subunit vaccine

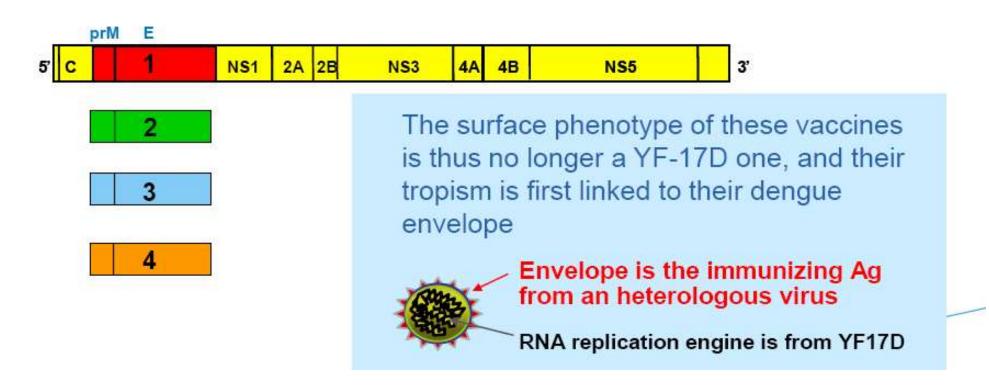
NIAID

TetraVax-DV
Live attenuated
Dengue chimeras
and gene deletion

Butantan

TV003
Live attenuated
Dengue chimeras
and gene deletion

Sanofi


CYT-TDV
Live attenuated
Yellow fever –
Dengue chimera

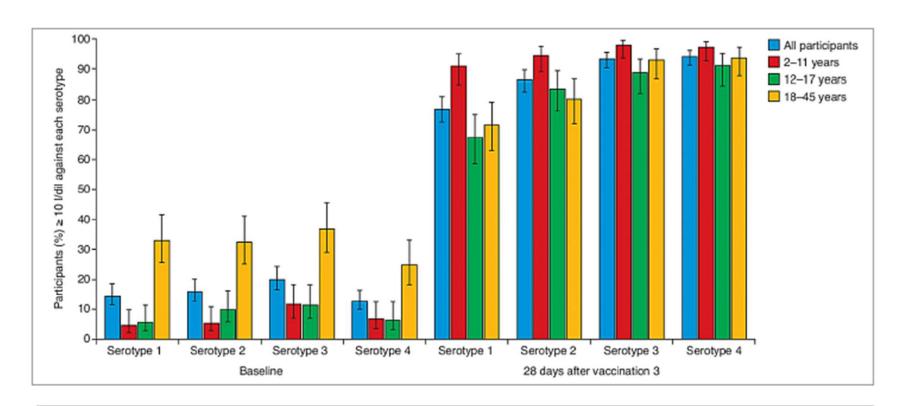
Takeda DENVax *Live attenuated* Dengue chimeras

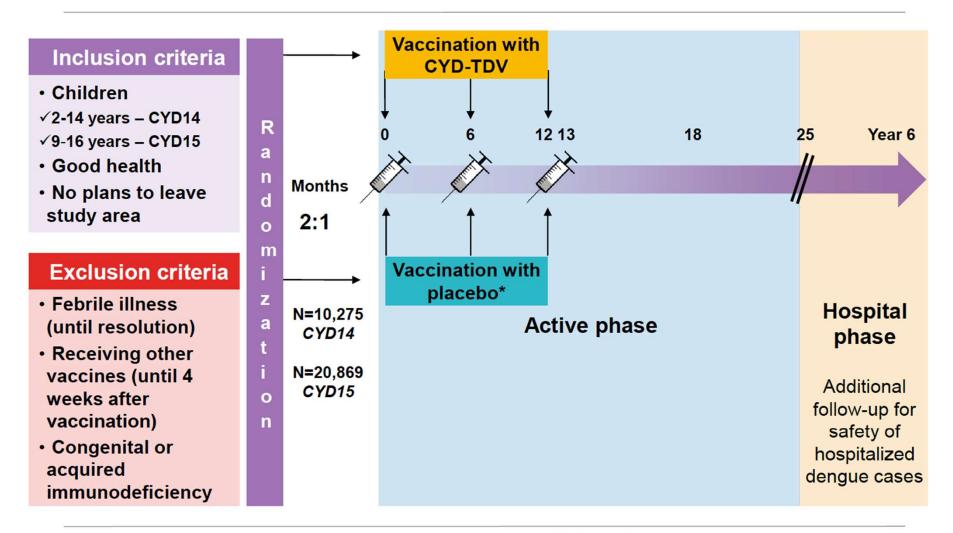
Live chimeric vaccine (SP)

Live attenuated CYD vaccinal viruses express the pre-membrane (prM) and envelope (E) proteins of each dengue serotype, which genes have been inserted in place of the corresponding genes of the YF 17D vaccine

Phase II randomized controlled trial in Singapore

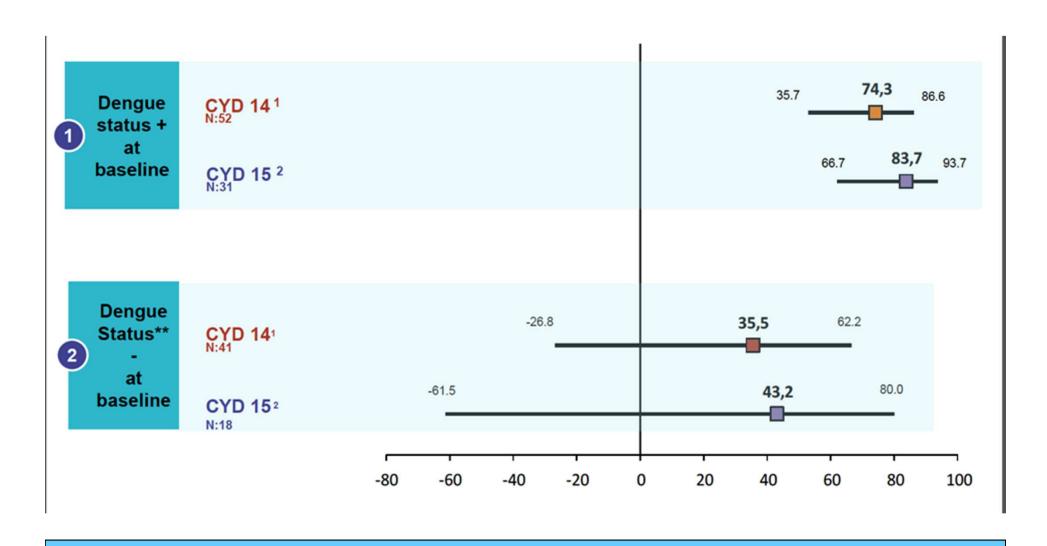
Yee Sin Leo, Annelies Wilder-Smith, 3 Sophia Archuleta, 3 Lynette P. Shek, 4 Chia Yin Chong, 5 Hoe Nam Leong, 6 Chian Yong Low, 4 May-Lin Helen Oh, 7 Alain Bouckenooghe, 8 T. Anh Wartel^{8,4} and Denis Crevat⁸⁰




Figure 3. Seropositivity rates (percentage of participants PRNT₅₀ titer ≥ 10 1/dil) against each of the four dengue virus serotypes (1, 2, 3 and 4) at baseline and 28 d after the third vaccination in all participants and in each of the three age groups.

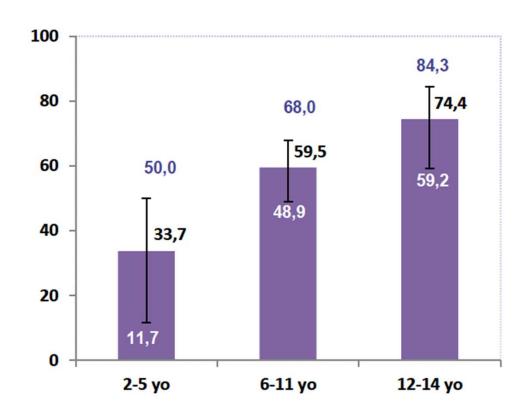
Sites of Phase 3 trials

Study design: Randomized, observer-masked, placebo-controlled, multicenter, phase III trials^{1,2,3}



Vaccine efficacy

	Latin American Trial (N= 20869)	Asian Trial (N= 10275)
Overall EfficacyPer Protocol	60.8% (52.0-68.0)	56.5 (43.8-66.4)
Serotype Specific Efficacy (Per Protocol) DEN-1 DEN-2 DEN-3 DEN-4	50.3 (29.1-65.2) 42.3 (14.0-61.1) 74.0 (61.9-82.4) 77.7 (60.2-88.0)	50.0 (24.6-66.8) 35.0 (-9.2-61.0) 78.4 (52.9-90.8) 75.3 (54.5-87.0)

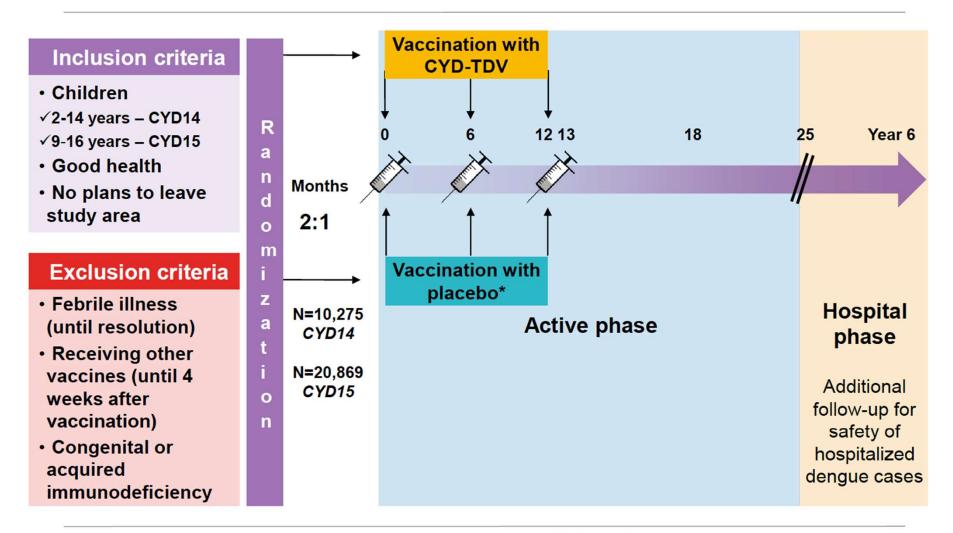

Efficacy by flavivirus baseline status

DCVMN

Efficacy by Age

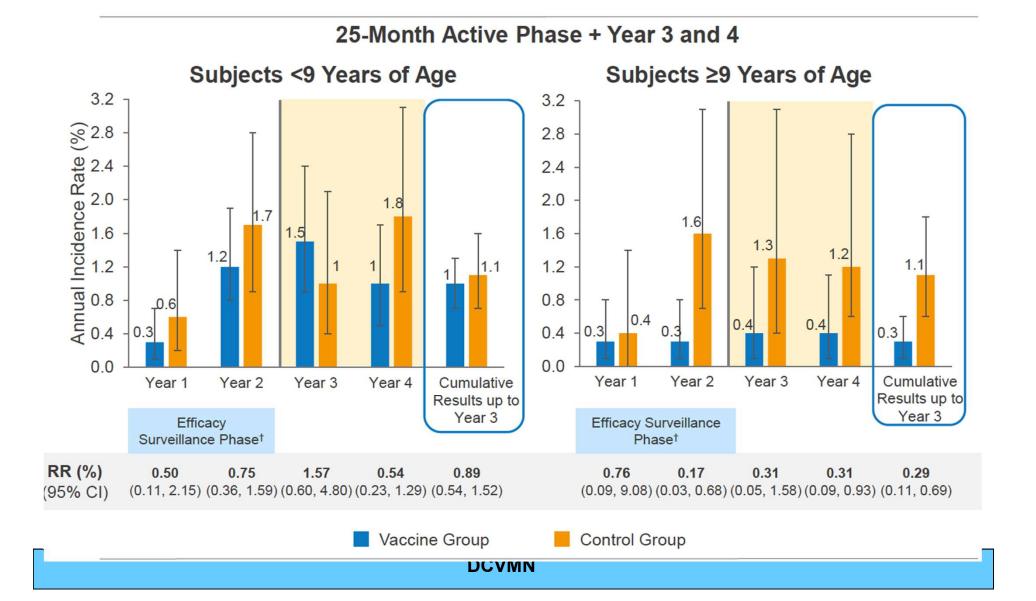
CYD14 efficacy against VCD by age (active phase)

Vaccine efficacy against severe disease


	Latin American Trial (N= 20869)	Asian Trial (N= 10275)
Efficacy against		
 Hospitalization 	80.3 (64.7-89.5)	67.2 (50.3-78.6)
Severe Dengue	91.7 (31.4-99.8)	80.8 (42·7–94·7)
• DHF	90 (10.7-99.8)	88.5 (58·2–97·9)

Vaccine efficacyintermediate summary

- Age
- Seropositivity
- Serotype


Efficacy against severity of disease > against incidence

Study design: Randomized, observer-masked, placebo-controlled, multicenter, phase III trials^{1,2,3}

HOSPITALIZED VCD (ANY SEVERITY) IN SUBJECTS 4–11 YEARS OF AGE BY AGE GROUP (CYD23/57)^{1*}

Hospital Phase / CYD14

Hypotheses to explain the observations in the younger age group

Serostatus

- Primary infection-like vaccination in SNeg
- Low responses in SNeg, thus waning more rapidly below protective levels

Age

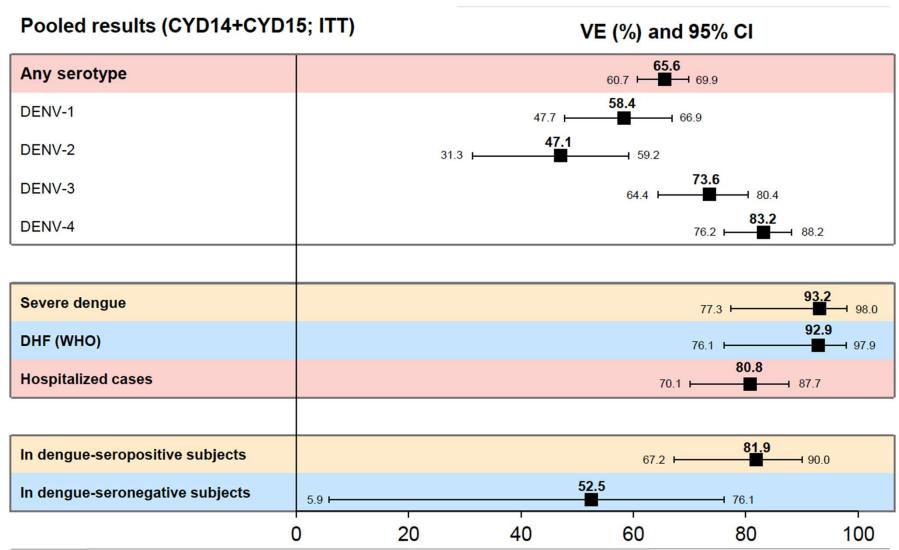
In the younger age group:

- More chance of being Sneg More chance of getting severe disease
- More immature immune system

Waning

- Abs waning below protective threshold
- More rapid waning below protective levels in SNeg

3 main interconnected hypotheses to explain the CYD14 observations in the younger age group


Cluster effect

- Clustered « primary infection » (vaccination)
- Then clustered « secondary infection » (1st wt infection), potentially more symptomatic/severe, before this takes place in placebos
- This would then be only temporary

DCVMN

Licensure filed for age 9 and above

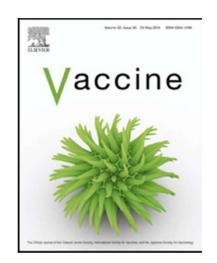
SUMMARY OF POOLED EFFICACY: VE WAS CONSISTENTLY DEMONSTRATED FOR THE CANDIDATE DENGUE VACCINE IN SUBJECTS AGED 9–16 YEARS IN THE 25-MONTH ACTIVE PHASE¹

DENV=dengue virus; DHF=dengue hemorrhagic fever; ITT=intent to treat; VE=vaccine efficacy; WHO=World Health Organization.

Dengue vaccines at a crossroad

Despite modest efficacy, a newly developed vaccine may be key for controlling dengue

By Annelies Wilder-Smith¹ and Duane J. Gubler² through direct and indirect protection, which is particularly pertinent for diseases that are of high public health importance.


bly death. Patients with a second infection with a different serotype are thought to be at increased risk for severe disease (2), pos-

Do we use a vaccine with moderate efficacy, limited to age group 9 and above, with little efficacy in seronegatives subjects?

Estimating the public health importance of the CYD-tetravalent dengue vaccine: Vaccine preventable disease incidence and numbers needed to vaccinate

Bradford D. Gessner^a, Annelies Wilder-Smith^{b,c,*}

- Vaccine preventable disease incidence (VPDI)
 - = Incidence[unvaccinated] X VE

Number needed to vaccinate

=NNV- 1/ARR

		Vaccine efficacy (95% CI)	VPDI	NNV
Dengue (5)*	engue (5)* All virologically confirmed clinical cases		1778	28
	All virologically confirmed hospitalized cases	80% (65, 89)	204	245

ntre

Publications

Countries

Programmes

Governance

About WHO

Immunization, Vaccines and Biologicals

SAGE Working Group on Dengue Vaccines and Vaccination (established March 2015)

Terms of Reference

The Working Group will be asked to review the evidence, identify the information gaps, and formulate proposed recommendations on the use of a licensed dengue vaccine for a SAGE review. This review is tentatively scheduled for April 2016. This will lead to the publication of a WHO position paper on the use of a dengue vaccine.

The Working Group will specifically be asked to review data relating to:

- · the global prevalence and burden of disease caused by dengue
- · the safety, efficacy, and immunogenicity profile of a licensed dengue vaccine
- the schedule, age of administration, and potential vaccination strategies for a dengue vaccine, including setting-specific attributes that may be important for designing immunization programs
- · the disease impact and cost-effectiveness of dengue immunization programs
- identification of key data gaps that may be important for decisions about immunization programs, and recommendations for data collection related to key issues such as long-term safety, duration of protection, etc.
- additional critical issues that need to be considered in drafting proposed recommendations

MEMBERSHIP

- Terry Nolan (Co-Chair), Australia
- Jeremy Farrar (Co-Chair), UK
- Ananda Amarasinghe, Sri Lanka (until 1.3.2016)
- Alan Barrett, USA
- Anna Durbin, USA (until 31.12.2015)
- Elizabeth Ferdinand, Barbados
- Maria Guzman, Cuba
- Maria Novaes, Brazil
- Lee Ching Ng, Singapore
- Amadou Sall, Senegal
- Peter Smith, UK
- Wellington Sun, USA (until 1.2.2016)
- Piyanit Tharmaphornphilas, Thailand
- Stephen Thomas, USA

DCVMN

Key sources for WHO global policy on dengue vaccine

WHO Vaccine Position Paper (published: 29 July 2016)

http://www.who.int/wer/2016/wer9130.pdf

Spanish circulated, to be posted online soon

Summary of Vaccine Efficacy Estimates

(from M0-M25, ITT ≥1 dose, post-hoc, pooled analyses)

- Vaccine efficacy amongst 9-16 year-olds was 65.6% (CI 60.7-69.9) (any severity)
- Vaccine efficacy varied by :
 - serotype of dengue
 - DENV-1 58.4%, DENV-2 47.1%, DENV-3 73.6%, DENV-4 83.2%
 - serostatus at time of vaccination
 - dengue-exposed 81.9%, dengue-naive 52.5%
 - severity of disease
 - severe dengue 93.2%, hospitalised dengue 80.8%

Number of hospitalized and/or severe VCD cases by age group and dengue immune status at baseline

		Active phase cases/N (%)		Hospital phase-SEP† cases/N (%)		Cumulative cases/N (%)	
Age group	Serostatus	CYD group	Control group	CYD group	Control group	CYD group	Control group
2-8 years	Seropositive*	2/493 (0.4)	8/240 (3.3)	7/476 (1.5)	3/234 (1.3)	9/481 (1.9)	11/236 (4.7)
	Seronegative*	2/337 (0.6)	2/178 (1.1)	15/326 (4.6)	3/170 (1.8)	17/330 (5.2)	5/173 (2.9)
9-16 years	Seropositive*	0/1605 (0.0)	6/777 (0.8)	7/1508 (0.5)	9/736 (1.2)	7/1546 (0.5)	15/752 (2.0)
	Seronegative*	0/398 (0.0)	2/214 (0.9)	7/372 (1.9)	3/197 (1.5)	7/382 (1.8)	4/204 (2.0)

Pool of CYD14, CYD15, and CYD57. *Includes only subjects from the Full Analysis Set for Immunogenicity; † Includes all subjects from the Safety Analysis Set for Efficacy; SEP: Surveillance Expansion Phase

WHO recommendations (1)

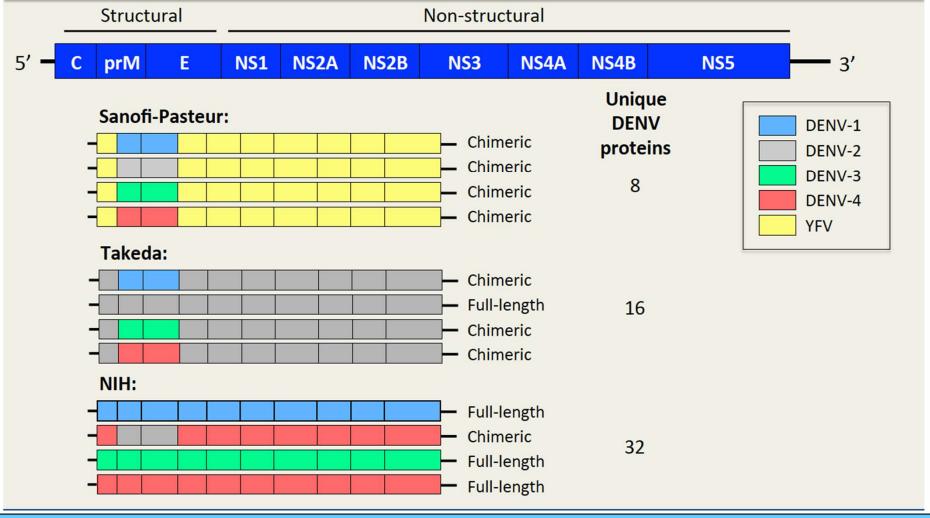
- Countries should consider introduction of CYD-TDV only in geographic settings (national or subnational) where epidemiological data indicate a high burden of disease.
- Seroprevalence should be approximately 70% or greater in the age group targeted for vaccination.
- The vaccine is not recommended when seroprevalence is below 50% in the age group targeted for vaccination.

WHO recommendations (2)

- Dengue vaccine introduction should be a part of a comprehensive dengue control strategy, including well-executed and sustained vector control, evidencebased best practices or clinical care for all patients with dengue illness, and strong dengue surveillance.
- Decisions about introduction require careful assessment at the country level, including consideration of local priorities, national and subnational dengue epidemiology, predicted impact and cost-effectiveness with country-specific inputs, affordability and budget impact.

WHO recommendations (3)

- The target age for routine vaccination should be defined by each country based on maximizing program impact and programmatic feasibility of targeting particular ages.
 - Modelling predicts vaccinating at different age groups depending on endemicity will maximize the number of cases averted
 - Programmatic factors such as school attendance, coadministration, etc., may also guide decisions about age groups to target
- If CYD-TDV is introduced it should be administered as a 3-dose series given as a 0/6/12 month schedule.



Summary

- The CYD-TDV vaccine profile is complex
- SAGE/WHO recommendations are conditional, recommending consideration only in select areas meeting seroprevalence criteria
- Vaccination should be considered as part of a comprehensive dengue control strategy
- If used as recommended in settings fitting the criteria recommended by SAGE, the vaccine could have a substantial public health impact on dengue
- Global recommendations are meant to inform national decision-making for national programs, which should always be done with consideration of the national context

Recombinant live attenuated DENV vaccine strategies

DCVMN

Science Translational Medicine

Home	News	Journals	Topics (Careers	
Science	Science Advances	Science Immunolog	gy Science Robotics	Science Signaling	Science Translational Medicine

SHARE

RESEARCH ARTICLE | INFECTIOUS DISEASE

The live attenuated dengue vaccine TV003 elicits complete protection against dengue in a human challenge model

Beth D. Kirkpatrick^{1,*}, Stephen S. Whitehead^{2,*}, Kristen K. Pierce¹, Cecilia M. Tibery³, Palmtama L. Grier³, Noreen A. Hynes⁴, Catherine J. Larsson¹, Beulah P. Sabundayo³, Kawsar R. Talaat³, Anna Janiak³, Marya P. Carmolli¹, Catherine J. Luke⁴, Sean A. Diehl¹ and Anna P. Durbin^{3,†}

Summary

- First dengue vaccine (SP) licensed in a few countries
- Efficacy is only partial
- Given the high burden of dengue, even a vaccine with partial efficacy will have a public health impact
- Long-term data on duration of efficacy and safety are needed
- Many other dengue vaccine candidates in the pipeline

Lee Kong Chian School of Medicine

A Joint Medical School by Imperial College London and Nanyang Technological University

Thank you!

