

VIPS - Vaccine Innovation Prioritisation Strategy (focusing on vaccine product attributes)

Marion Menozzi-Arnaud, Gavi Birgitte Giersing, WHO

June 2019

Presentation objectives

 To introduce the Vaccine Innovation Prioritisation Strategy (VIPS) initiative to DCVMN members, in preparation for a plenary session on VIPS at the annual General Meeting, in October 2019.

VIPS: Vision and goal

unicef

VISION	 Innovation is one of the Alliance priorities for shaping markets to the benefit of Gavi-supported countries. The Alliance aims to pursue a common agenda of: Driving vaccine product innovation to better meet country needs Support Alliance goals on immunisation coverage and equity.
GOAL	 Prioritise innovations in vaccine product attributes to provide greater clarity to manufacturers and partners to make investment decisions.

What do we mean by product innovation

Driving product innovation to better meet country needs and improve coverage and equity

Definition:

The term 'product innovation' refers to **completely new products** or to **adaptations to existing products** that provide **measurable financial or programmatic benefits** to **lower and middle income countries**, such as increased coverage and equity (e.g., by overcoming a 'last mile' barrier) or vaccine effectiveness.

VIPS is a close Alliance-wide collaboration effort

BILL& MELINDA GATES foundation

VIPS also relies on a Steering Committee: an independent and expert advisory body

- **17 experts** bring the following expertise:
- National immunisation programme financing and implementation
- Coverage and equity barriers and challenges
- Infectious disease epidemiology / vaccine-preventable disease control
- Health impact analysis / modelling
- Vaccine innovations, R&D, upstream product development.

VIPS will assess 24 vaccine delivery related innovations

		Category	Innovation type		
Category	Innovation type	Delivery technology	AD sharps-injury protection (SIP) syringes		
Primary vaccine container	Blow-fill-seal (BFS) primary containers	(not pre- filled)	Disposable syringe jet injectors (DSJI)		
	containers	meay	ID syringes		
(w/o delivery device)	Dual chamber vials	Formulation	Heat stable/controlled temperature chain (CTC) qualified liquid		
Integrated	Compact prefilled auto-disable		formulations		
primary container	devices (CPAD)		Heat stable/ CTC qualified dry		
and delivery	Single-chamber cartridge injectors		formulations		
technology	Dual-chamber delivery devices		Freeze damage resistant liquid formulations		
	Microarray patches (MAP)	Packaging	Bundling devices		
	Prefilled polymer BFS dropper/dispensers	and safety	Reconstitution vial adapters		
	Prefilled dry-powder intranasal		Plastic needles (for reconstitution)		
	devices	Labelling	Freeze indicator on primary vaccine		
	Solid-dose implants (w/ applicator)		container		
	Sub-lingual dosage forms		Combined Vaccine vial Monitor (VVM) and Threshold Indicator (TI)		
	Oral fast-dissolving tablets		Barcodes		
			Radio Frequency Identification (RFID)		

VIPS includes two phases

<u>Phase I</u> – Initial prioritisation of innovations

From December 2018 to June 2019

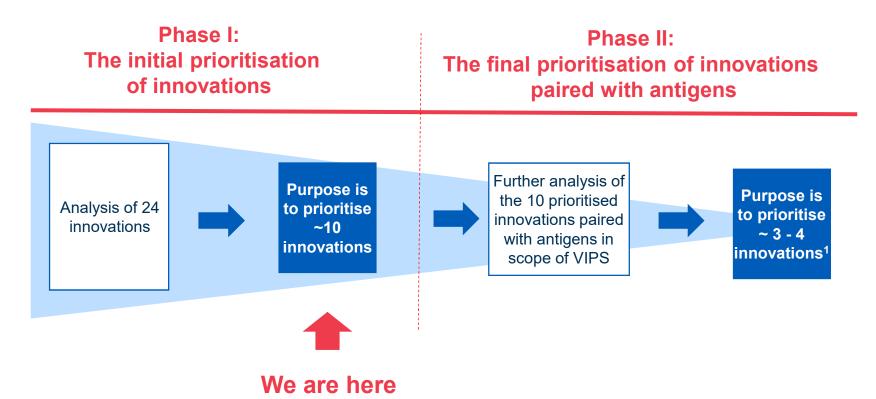
Innovations will be analysed in terms of:

- Their characteristics and potential public health value;
- Their potential 'breadth of use' (applicability to several antigens) based on technical feasibility.

Phase II – Final prioritisation of innovations paired with antigens

> From July 2019 to December 2019

 Innovations prioritized in Phase I will be combined with selected antigens for further detailed analyses and prioritisation.



Overall prioritisation 'aim'

¹ Purpose is to prioritise innovations "themselves", "as platforms", however if relevant it will be signaled for which individual antigens/vaccines or types of vaccines the innovation is seen to be most valuable.

VIPS evaluation framework includes different and complementary indicators for Phase I and Phase II

unicef 🚱

	Health impact	Phase I will	
Primary Criteria	Coverage and equity impact	assess innovations	
	Safety impact	without — antigens using indicators along these	Phase II wil assess
	Economic costs		innovations paired with priority
Secondary Criteria	Potential breadth of innovation use	criteria	antigens using new
	Technology readiness		along these
	Commercial feasibility		

Evaluation framework for Phase I

Criteria

Indicators

Primary ranking criteria	Health Impact	 Ability of the innovation to withstand heat exposure Ability of the innovation to withstand freeze exposure
	Coverage and Equity impact	 Ease of use Potential to reduce stock outs based on the number of separate components necessary to deliver the vaccine or improved ability to track vaccine commodities Acceptability of the innovation to patients/caregivers
	Safety impact	 Likelihood of contamination Likelihood of needle-stick injury
	Economic costs (i.e. Delivery and Introduction and recurrent costs)	 Total cost of storage and transport of commodities per dose Total cost of the time spent by staff per dose Total cost of introduction and recurrent costs (not otherwise accounted for)
Secondary criteria	Potential breadth of innovation use	 Applicability of the innovation to one or several types of vaccines Ability of the innovation to facilitate novel vaccine combination

Evaluation framework for Phase II (1/2)

Criteria

Indicators

	Health Impact	Vaccine efficacy
		Vaccine effectiveness
		 Ability of the innovation to withstand heat exposure¹
		 Ability of the innovation to withstand freeze exposure¹
		 Number of fully or partially immunised individuals (relative to target pop)
	Coverage and equity impact	 Ease of use²
		 Presentation which helps prevent missed opportunities due to
Primary		reluctance to open MDV without preservative
ranking	Safety impact	 Number of vaccine product-related adverse events
criteria		 Likelihood of contamination²
	Economic costs (i.e. Commodity, Delivery and Introduction and recurrent costs)	 Total cost of a vaccine regimen with the innovation, including wastage
		 Total cost of delivery technology(ies) used for the vaccine regimen, including wastage
		 Total cost of safety boxes used for the vaccine regimen, incl wastage
		 Total cost of storage and transport of commodities (per vaccine regimen)¹
		 Total cost of the time spent by staff (per vaccine regimen)¹
		 Total cost of introduction and recurrent costs (not otherwise accounted for)¹

¹ Same indicators as for Phase I but further assessed under Phase II due to the antigen/vaccine pairing

² This indicator is re-assessed in Phase II only when the comparator for a specific vaccine is a MDV, requiring a new evaluation – The comparator SDV is assessed in Phase I

Evaluation framework for Phase II (2/2)

Criteria

Indicators

Secondary ranking criteria ¹	Technology readiness	 Clinical development pathway complexity Technology development challenges Regulatory pathway complexity Complexity of manufacturing the innovation Robustness of the innovation pipeline
	Commercial feasibility	 Potential breadth of market size Existence of partnerships to support development and commercialisation Known barriers to global access to the innovation Stakeholders' interest

¹ These criteria will be evaluated in an absolute manner, not relative to a comparator.

In Phase II, the ~ 10 prioritised innovations in Phase I will be further analysed with 17 antigens (10 licensed, 7 pipeline)

VIPS priority antigens – <u>LICENSED</u> antigen/ vaccine or family of vaccines

Men Vaccines

M or R containing

DT containing

Hepatitis B (birth dose)

Human papillomavirus (HPV)

Poliovirus, inactivated (IPV)

Rabies

Rotavirus

Typhoid (Salmonella typhii),

Yellow Fever (YF)

BILL& MELINDA GATES foundation

antigen Enterotoxigenic E coli (ETEC) Ebola Human immunodeficiency virus (HIV)

VIPS priority antigens – PIPELINE

specific candidate identified for each

Influenza (pandemic)

Mycobacterium tuberculosis (next generation)

Respiratory syncitial virus (RSV)

Malaria (RTS,S & next generation)

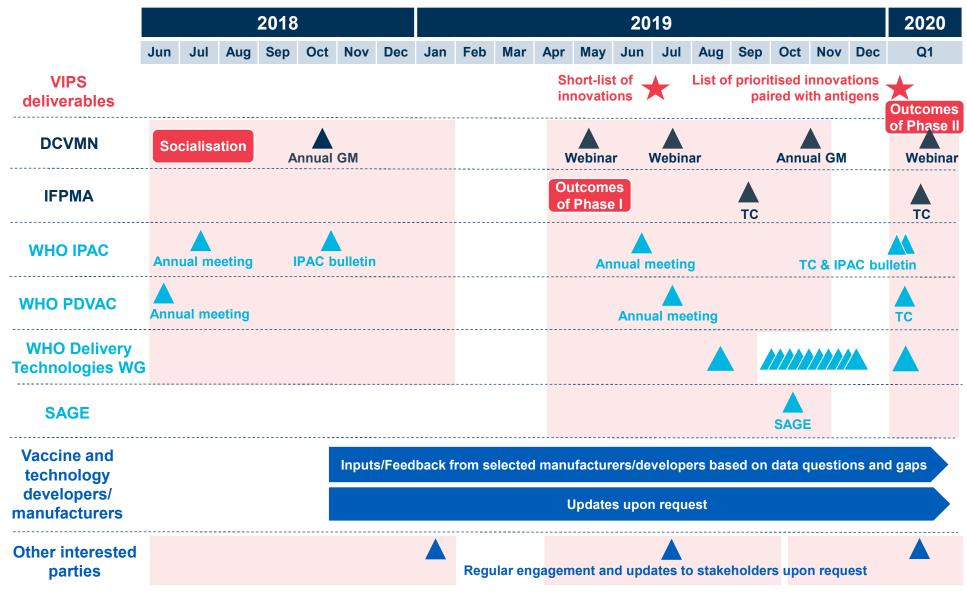
Selection criteria for the VIPS priority antigens

These 17 antigens have been selected based on several criteria, including:

- For existing vaccines, preferentially select those that are WHO PQ'd, GAVI funded and UNICEF procured
- Prioritize antigens that have an **elimination or eradication agenda**
- Pathogens likely to cause an outbreak, target atypical population, benefit from dose sparing
- Standard multi-dose vial w/ preservative not feasible
- Prioritize antigens that have a robust pipeline or number of producers (both for prelicensed and licensed vaccines)
- Unique delivery considerations, e.g. HepB: 40% of deliveries are outside of health facility, by community volunteers.
- For pipeline, select the most advanced, with highest probability of success

Prioritization of pipeline (unlicensed vaccine) candidates

Antigen	Vaccine candidate	Platform	Phase	Rationale for inclusion	Reference
<u>Malaria</u>	RTS,S	Adjuvanted recombinant protein (ARP)	IV	Potential for inclusion of fractional dose in schedule (currently 4 doses)	NCT03806465
<u>Ebola</u>	rVSV-ZEBOV	viral vector	compassio nate use		https://www.who.int/e bola/drc-2018/faq- vaccine/en/
<u>Human</u> immunodeficiency virus (HIV)	P5: ALVAC/ gp120 + MF59	viral vector + ARP	IIb/III	Heterologous prime boost approach, requiring 2 different vaccines in the same regimen	NCT02968849
Influenza (pandemic)	VAL-506440	lipid nanoparticle (LNP)-formulated, modified mRNA		Novel vaccination platform with applicability to emergency response pathogens	NCT03076385
<u>Mycobacterium</u> tuberculosis	VPM1002	recombinant BCG		New generation BCG approaches in late stage clinical development still require ID administration	NCT03152903
Respiratory syncitial virus (RSV)	ResVax	ARP		Potential for near term licensure; use of mapping innovations that could facilitate delivery in LMICs	NCT02624947
Enterotoxigenic E coli (ETEC)	Etvax	Inactivatedwhole cell + adjuvant	llb		EUCTR2016-002690- 35-Fl


Distribution of selected antigens within the vaccine landscape

	WHO recommended / Unicef procured antigens – routine immunization, all regions					ecommended antigens – higl	/ Unicef procured h risk pops	
	Group 2HepB6MMR6BCG6mOPV1bOPV6Rubella						Grou	р За
	DTaP ⁶ DTwP ⁶ TT TD ^{1,6}	Group 1 IPV ⁶ I	Penta ⁶		Group Typhoid (conj) ⁶		Deng (not PQ	1)
	mOPV ³ Hib ^{3,6} Hexa ^{3,6} DTwPHib ^{3,6} DTwP booster		HPV V ⁶		Meningitis (o Rabies ^{1,6}	onj,multi) ^{1,6} Men Flu seaso Flu H		nal ^{3,6}
			Measles ers ¹			OCV ⁶	Typhoid F	2S ^{3,6}
	Group 4a HepA ^{3,6}	Group 4 YF ⁶ JE	Suppo Group 5		ccines	Group 6 pFlu ^{5,6} Ebola	Group 6a HepE	
	WHO recomr Unicef pro antigens – cert ed in Gavi VIS 5.0	cured		-	GBS	MERS	RVF Chik CCHF Zika SARS	
 2 Phase II or beyond 3 Not procured by UNICEF 4 Next generation 5 Gavi learning agenda 6 PAHO Revolving Fund 		influenza ⁴ PIPELINE Priori BoD, unmet µ (phase II	oublic h	ealth need	Pathoge	Epidemic respons ns (phase I and beyond)	;e	

The VIPS team will engage with industry and other key stakeholders

Remit of the WHO/PATH Delivery Technologies Working Group

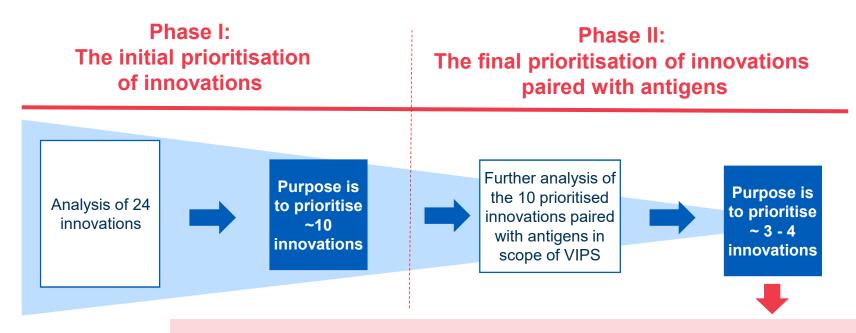
- Provide a platform to enable industry and the public sector to engage in constructive dialogue on the presentation, packaging, and delivery aspects of vaccine products.
- Optimize innovation and maximize the appropriateness of immunization products for public sector use.

Objectives:

- Inform industry about LMIC programmatic preferences and operational realities.
- Sensitize the public sector to industry constraints and economic realities of investing in product development

VIPS engagement with Delivery Technologies Working Group

- The VIPS team will engage with the DT-WG under Phase II with the objectives to:
 - Update broader set of immunization stakeholders, including industry, on VIPS objectives, process, and progress.
 - Provide feedback on 10 VIPS prioritized innovations from the perspective of technical feasibility, manufacturability, regulatory hurdles, alignment with manufacturer priorities, and incentives needed to encourage product development and uptake.



VIPS deliverables early 2020

A report will be published, with the aim to send signals to innovation developers and vaccine manufacturers and partners on most valuable innovations, rationales and recommendations for next steps, and inform the research agenda

(both Phase I and II outcomes will be communicated at the same time)

The Alliance is committed around a long-term vision for VIPS

Beyond prioritisation, the Alliance recognises the need to support product development and country uptake

Beyond 2019

As a next step, the Alliance will also consider how to **support the prioritised innovations beyond prioritisation and signalling** Depending on each innovation, support may be needed for:

- Product development
- Regulatory pathway
- Field studies
- Procurement
- Country uptake
- Etc.

