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Key challenges and opportunities

= Delivery challenge

v Degradability of biological vaccine antigens, e.g. nucleic acids,
recombinant proteins

v" To be delivered in the correct conformation

v’ Lacks potential to target the immune cells

= Manufacturing and storage challenge
v Reduced potency due to elevated temperature or accidental freezing

v Vaccine stability during storage

= Opportunities
v’ Targeted, efficient vaccine delivery formulations
v' Manufacturable, heat-stable formulations
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= Novel vaccine delivery formulations

v’ Bioresponsive polymers

v" Virus-like liposomes

= Biostabilisation of vaccine delivery formulations
v Dry storage at room temperature

v Sugar (trehalose, sucrose, glucose) loading by polymers/liposomes

= Potential outcomes
v Flexible and robust platforms for improved stability and efficacy of vaccines
v' Manufacturable formulations with optimised biostabilisation during storage
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Proposed approaches and outcomes 1

= Novel vaccine delivery formulations

v’ Bioresponsive polymers

v" Virus-like liposomes
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Inspiration from reproductive cycle of influenza virus
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Grafted pseudopeptides
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Virus-like nanoparticles as delivery vehicles
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Intracellular delivery of biological molecules
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Intracelluiar delivery of biological molecules

= Protein delivery | | |

Negative Control

N SO

Delivery of peptide CamBP (3.5 kDa)

- ;3
o STMN siRNA

Delivery of peptide
PS-16-FITC (2 kDa)

Delivery of antibody
FITC-lgG (160 kDa)

= RNA delivery 7 w1
E 1 —rprssMnsina )
GEJ 2000 + ~o- PP75-scrambled siRNA ]
= * {
o l'f‘
> 1000 4 1 7
g 7 A
— " 4 1
'_. 0 r__-; . T T T
0 10 20 30
Cytoplasmic siRNA Negative Control Knockdown of stathmin Time (days)
delivery via siRNA delivery Khormaee et al, Advanced Functional

Matariale 2012 2? RAR



Imperial College

Key challenges and opportunities 2

= Manufacturing and storage challenge
v" Reduced potency due to elevated temperature or accidental freezing

v Vaccine stability during storage

= Opportunities
v’ Targeted, efficient vaccine delivery formulations
v Manufacturable, heat-stable formulations



Imperial College
LONAOI

Temperature-induced risk factors for 49
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Inspiration from anhydrobiotic organisms
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= Trehalose: non-toxic disaccharide

= Protection in freezing and drying

=  Antioxidant

Freezing
Thawing

Dehydration
Rehydration
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Heat-stable formulations (nanoparticle- & cell-hased)
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Use of biocompatible molten salts
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and saRNA to be dissolved in ol g &
biocompatible ionic liquids e ‘ cgf T
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Nanoconjugate o

Imparts higher stability to proteins (50-70 C vs native; > 100 vs aqueous)

Demonstrated for structural proteins (stable to 180 C), enzymes (activity
increased 100-1000x), antibodies (30-50x longer stability; 46% binding retained),
viruses (new materials applications)

Thermal stability increased; aggregation effectively prevented; water excluded
Needs biocompatibility, reversibility, combination with delivery vectors

Potential alternative to freeze drying?
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W/O emulsion Similar
principles
apply to
viruses, VLP
and
recombinant
proteins

Dispersing
inIPM +IL
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complex
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Med. Chem. Commun., 2015, 6, 2124-2128
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STAGE 1 STAGE 2 STAGE 4
Monoclonal _ .
Antibodies Viruses Vaccines
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Improve thermal stability of antibodies to 60 ° C for 6 months in ionic liquids

Retain bioavailability depending on thermal stability and if reconstitution is

needed

Achieve similar results with viruses and vaccines
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Exemplar target: Antibody Structure

The Fc domain is constant in
A.A  and glycosylated for
biological recognition

Variable regions containing three
antigen-binding loops each

Variable region different in A.A
sequence to maintain specificity

Complementarity
Determining
Region

Fragment
Antigen Binding

Fragment
Crystallisable

Monomer Y-shaped structure of antibodies, where
V and C represents the variable and constant
region. Subscripts L and H represent the light and
heavy chains.!

1. Perchiacca, J.M. and P.M. Tessier, Annual Review of Chemical and Biomolecular Engineering, 2012
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« Viruses are intracellular parasites containing either RNA or DNA
« Genetic material encapsulated by a protein capsid
« VLPs a potential delivery mechanism

RNA Capsid Lipid Envelope

; RNA
. Capsid
Glycoprotein Glycoprotein
Helical Polyhedral Enveloped Non-infectious VLP

Different Viral Structures'

1. Campbell, N.A., Pearson Education Inc., 2008
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Proteins in lonic Liquids

1.

Proteins are poorly soluble in neat

ionic liquids jonic 10 Insoluble
_ Liquid = & Unmodified

Adding polymer-surfactant to the Protein

protein surface produces liquid

proteins

Retains biological activity of

proteins, enzymes and viruses

Modified myoglobin and glucosidase

dissolved in hydrophilic and

hydrophobic ionic liquids Modified
Soluble

Increased protein denaturation Protein

temperature by 60° C to 140° C
compared to aqueous solution

Modified proteins to allow dissolution in ionic
liquids!.?
Brogan, A.P.S, and Hallett, J.P., Journal of the American Chemical Society, 2016

2. Brogan, A.P.S, Bui-Le, L., and HaIIett J.P., Nature Chemistry, 2018
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Nanoscale Ligquids
o Repulsion 15
2 |
<o nanoscale 0
g \ >
ek 1 Attraction y
N LA N
1.0 15 20 1.0 15 2.0
Distance (d/d,)) Distance (d/d,)

« Nanoscale objects do not have a liquid phase.

« Interparticle interactions need to be extended.
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Liquid Proteins
(1)
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(1) Cationization of surface acidic residues with amines using the EDC
reaction. H H
\H/\/\H/ HZN/\/N\/\/N\/\NH2

(2) Electrostatic complexation with anionic surfactant to form aqueous
nanoconjugates.
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(3) Lyophilization of conjugate, followed by annealing at 60 ° C to form
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Acetonitrile

.+ Molecular dynamics simulations from | Solvent-free

aqueous to solvent-free state (=100 ns).

i« (Observe surfactant corona behaviour in
‘ water and organic solvent. |

« Discrete conjugates in solvent-free liquid
with some interdigitation.

i« Consistent with SANS measurements.

J. Am. Chem. Soc. 2014
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e UV/Vis shows retention of
structure in all conditions

- SRCD indicated ionic liquids -°

// 1,0
induced a-helicity

[bmpyrr][OAc]
[bmpyrr][OTf]
« Thermal stability of proteins [bmpyrr][NTf,]

increased significantly in ionic

0 S0 100 150 200

J. Am. Chem. Soc. 2016.
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Ionogel Hydrogel

« Relatively new material — come into prominence over past decade.

« Gel system of ionic liquid encapsulated by polymer matrix.

« Current research concentrating on soft electronics — little to no research on
biocatalysis or biointerfacing.
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i I B E Massachusetts
" I I Institute of
Technology

« M13 is a filamentous bacteriophage with extremely high aspect ratio -
10 nm wide by 900 nm long.

« Used by Belcher Lab (MIT) as highly versatile scaffold for templating
various materials.

« Prospective uses as soft batteries and catalytic materials.

(1) UMC Utrecht Phage Library
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M13 lonogels [bmpyrr][OTf]
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« Possible to make mixtures of
| M13 biofluid and ionic liquids.

e Structure maintained in the
| ionic liquids.

« Ionogels with M13 inside can
i be created.
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46 % activity compared
to native after 10
injections
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Streptavidin bound to 2 biotin _ _
molecules Isothermal calorimetry data comparing the heat

of binding for the unmodified and modified
streptavidin with iminobiotin at pH 9.5
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* Nanoparticle delivery vehicles
* Freeze dried formulations

* rongjun.chen@imperial.ac.uk

* |lonic liquids for thermo-stabilisation

« j.hallett@imperial.ac.uk

Thank you for your attention



