

Strategic Considerations for Implementing Single-Use Technologies in Vaccine Process

Priyabrata Pattnaik, PhD Director – Worldwide Vaccine Initiative

Agenda

What is a single use system?

Single use system is an engineered process equipment solution, most commonly assembled from components made using polymeric materials, which together creates a system or unit operation designed for one time or campaign use.

Single use components are individual parts designed to perform a particular function when assembled into a SU system.

Single use assemblies are self contained & pre-assembled plastic fluid paths, usually provided gamma irradiated & ready to use that uses a combination of standard components. Single-use assemblies can be customized to meet defined application.

Example: Fluid transfer containers, Filling system, Sampling bag set-up for QC testing

Anatomy of an single use System

SU components, assemblies and systems

Reasons for increasing use of SU components

Factor	Biotherapeutic Developers (exclusive of CMOs)	Vaccines Producers Only
1. Reduce time to get facility up and running	ng 43.3%	60.0%
2. Eliminate cleaning requirements	43.1%	41.7%
3. Eliminate use of hazardous cleaning flui	ds 14.4%	40.0%
4. Decrease documentation requirements	20.0%	36.4%
5. Ability to sterile-sample	14.7%	36.4%
 Reduce capital investment in facility & equipment 	36.4%	30.0%
7. Faster campaign turnaround time	35.7%	30.0%
8: Increase total annual capacity at my fac	ility 17.5%	30.0%
9. Decrease risk of endogenous contamina (e.g. bacterial)	tion 24.0%	27.3%
10. Disposable filters more convenient	17.5%	27.3%
11. Avoid hazardous waste disposal	14.3%	25.0%
12. Decrease risk of product cross-contamin	ation 41.2%	20.0%
13. Greater assurance of sterility	25.0%	20.0%

Reasons for increasing use of SU components

Factor	Biotherapeutic Developers (exclusive of CMOs)	Vaccines Producers Only	
14. Lower annual maintenance costs	24.8%	20.0%	
15. Improve scheduling ability	23.2%	20.0%	
16. Reduce space requirements	22.2%	20.0%	
17. Flexibility of a 'modular' approach	31.3%	10.0%	
 Strength and reliability of disposable components were shown to be comparable to fixed systems 	19.1%	9.1%	
 Avoid costs associated with system re-design and modifications 	18.0%	9.1%	Not very relevant
20. Simplify operations, and reduce learning curve for new operators	8.3%	9.1% t	o Vaccine
21. Easier QA/QC	15.6%	0.0%	
22. Reduce water requirements	15.5%	0.0%	
23. Faster process optimization (flexibility to try different processes)	12.6%	0.0%	
24. Reduce operations staff	9.0%	0.0%	
25. Ease of control of bioreactor (use of probes, etc.)	8.4%	0.0%	

11 DCVMN Annual Meeting, New Delhi | 27 October 2014

Source: 9th Annual Report and Survey of Biopharmaceutical Manufacturing BioPlan Associates, Inc., April 2012

When to implement single use?

Key decision areas for single use manufacturing strategies

Assessment parameters and attributes

Assessment parameters and attributes

Attributes / parameters should be mapped and documented before the system is designed

Where to use SUS ? Risk complexity and applications

	System Complexity					
		Low	Moderate	High		
Impact to Process	Low	Buffer/Storage	UF*/DF ^t / Concentration	Clarification/ Re- covery	Low	Impa
	Moderate	Transport/ Shipping	Connectors/Mixing/ Medium Storage	Cell Culture/ Fermentation	Moderate	ct to Pro
	High	Freeze/Thaw	Purification/ Product Storage	Fill and Finish	High	Cess

*UF – ultrafiltration

[†]DF – diafiltration

Generic vaccine process: Where to use single use?

19 DCVMN Annual Meeting, New Delhi | 27 October 2014

How to implementation single use: A road map

Source: PDA Technical Report No. 66, (TR 66) Application of Single-Use Systems in Pharmaceutical Manufacturing

Implementation of SUS and assessment of vaccine process and product risk

Case Study: Cell culture media preparation

Generic vaccine process: Cell culture media preparation step

Technical feasibility

Technical feasibility: What parameters relevant to mixing?

	SUS lechnical reasibility
	Liquid constituents
•	Volume
•	Temperature
•	Flow rate
•	Time
•	pH
•	Sterility requirements
	ouriphing requirements
•	Solid additions
•	Solid additions Mixing requirements
•	Solid additions Mixing requirements Cell viability
• • •	Solid additions Mixing requirements Cell viability and growth rate requirements

Media preparation in SU mixer Technical feasibility

- Granulated Trypticase Soy Broth (TSB), DMEM-F12
- Evaluation Criteria
 - Floating solids
 - Solubility limits
 - Foaming
 - Homogeneity determination
- Mixing strategies
 - Maximize power to volume ratio
 - Dispense solute into MIX containing the minimum working volume of solvent
 - Run the impeller at high speed
 - Creates a vortex to draw floating solids down to the impeller
 - Higher shear and turbulence at the impeller
 - Use elevated temperature to promote faster dissolution

Mixing studies in single use mixer

- Develop mixing conditions and times
- Couple with filter sizing/pilot studies

Media filtration optimization

Process risk considerations

Process risk considerations

- Deployment of SUS and operator training
- · Physical strength of SUS
- · Failure modes and recovery
- Failure rate of SUS vs MUS
- Impact on operator Safety
- Preventive maintenance

Potential Process Alteration

- Size limitations of SUS vs MUS
- Facility capacity/productivity of SUS vs MUS
- Extent of process adjustments required for optimal use of SUS vs MUS
- · Changes in SUS barrier due to surroundings
- Changes in time/duration of process Are CPPs still being met?

All points relevant to Vaccine processes

Product risk considerations

Product risk considerations

Potential for Added Contaminants

- Leachables/extractables of SUS vs MUS
- Contamination due to manufacturing of SUS
- · Chemical contamination due to SUS
- · Cross contamination from other products

Potential Process Alteration

- Adsorption product or functional component
- Suboptimal processing due to technical limitations of SUS
- · Change in SUS barrier due to surroundings

Are CQAs still being met?

Less likely a concern for media preparation in SU

Summary

- Media Preparation falls under risk level 1
- Single use has been successfully used and implemented for media prep and storage applications
- The risks have been assessed by different manufacturers and found to be generally acceptable and manageable

Case Study: Multivalent vaccine formulation

Generic vaccine process: Formulation and fill finish step

Risk profile of SUS items

Directional Risk Profile		Complexity of SUS Items			
		Low	Moderate Low	High	
Risk of SUS Application	Low	Tubing & Connectors	Sampling Systems: Not a direct impact	Clarification/ Concentration	
	Moderate	Manifolds: Externally sourced	Storage using SUS: raw materials, media, supplements, buffers, drug intermediates, product	Drug product formulation	
	High	Manifolds: Self-assembled	Sterile connectors	Cell & virus culture	

Vaccine formulation and bulk preparation

Process involves mixing, storage, and transfer of products for filling

Flow diagram of single-use formulation of multivalent vaccine in a closed system

Layout of a typical single-use finish & fill set-up for vaccine applications

Assessment of vaccine process and product risk is more critical for formulation and fill

Assessment of vaccine process and product risk is more critical for formulation and fill

All the points under

- Technical feasibility
- Product risk considerations
- Process risk considerations

are critical for formulation and fill operation

Preventive maintenance

Potential Process Alteration

- Size limitations of SUS vs MUS
- Facility capactiy/productivity of SUS vs MUS
- Extent of process adjustments required for optimal use of SUS vs MUS
- · Changes in SUS barrier due to surroundings
- Changes in time/duration of process
 Are CPPs still being met?

Potential Process Alteration

- Adsorption product or functional component
- Ability of SUS to catalyze a reaction
- Suboptimal processing due to technical limitations of SUS
- Change in SUS barrier due to surroundings

Are CQAs still being met?

Why to implement single use in formulation fill application, when the risks are higher?

Assessing Potential Economic Advantage of Single-use Technologies

Cost advantage of SUS in formulation fill of vaccines

Source: Jenness E, Gupta V (2011) Implementing a Single-Use Solution for Fill–Finish Manufacturing Operations, BioProcess International Supplement, May 2011: 22-26.

Summary

- Formulation and fill operations falls under risk level 3
- Single use has been successfully used and implemented for formulation and finish fill applications
- The risks have been assessed by different manufacturers and found to be acceptable due to significant operational cost advantage
- Risks are manageable by careful planning and implementation

Take home message

- Single use implementation in vaccine production is a strategic consideration that needs deeper level planning and analysis
- Use of single use technologies can quickly help increase operational flexibility and manufacturing capacity
- Implementation of single use technologies is a multi-stage collaborative process
- Contact Merck Millipore to further discuss and learn about the subject in details

Products. Services. Expertise. Overcome your vaccine process challenges.

- Regulatory know-how
- Integrated suite of products & services
- Application expertise

