Product characterization of pertussis Whole Cell Vaccine by mass spectrometry

Bernard Metz, Joost Uittenbogaard and Arno van der Ark

- Introduction
- Gene and protein regulation during cultivation
- Mass spectrometry
- Antigen composition as measurement of product quality

Reasons for characterization of pertussis vaccines

- Resurgence of pertussis in populations well vaccinated with acellular pertussis vaccines triggers development of new pertussis vaccines
- Polio eradication triggers development of hexavalent DPT-Hib-HepB-IPV_{sabin} vaccines necessitating investigation of compatibility of pertussis component
- Potency release tests are not sensitive and reproducible enough and therefore not suitable for this type of research

B. pertussis culture

- Start of all pertussis vaccine productions
- Undefined intermediate product
- Product characterization required

Process and product characterization

Institute for Translational Vaccinology

Genomics

Bvg-regulated virulence of *B. pertussis*

Institute for Translational Vaccinology

Process knowledge = product quality

Culture conditions of *B. pertussis* affect the quality of WCV.

- Bvg regulated virulence factors are in general protective
- Expression of virulence factors affected by e.g. nutrient limitations, culture temperature ٠ (artificial factors like nicotine or MgSO4)

B. pertussis batch culture

Institute for

intravacc

Score based on activation of 56 vag's

Consistency = process & product knowledge

Steady state culture of *B. pertussis*

- MgSO4 → *bvg* down regulation → reduction in virulence factors
- Product characterization
 - 3 biorector runs
 - sampling \rightarrow T = 0, 2, 6, 12 and 24 hours
 - Plain inactivated WCV A, B, C, D and E

Institute for Translational Vaccinology

Product characterization

Institute for Translational Vaccinology

Microarrays

Monitoring virulence associated genes

Monitoring key marker antigens

Selection of key marker antigens

- known protective antigens (generally virulence factors)
 - Ptx (excreted \rightarrow hardly present in WCV)
 - FHA
 - **Prn** (splitted off \rightarrow poorly present in WCV)
 - Fimbriae
 - Vag8 (virulence associated gene 8)

ELISA (quick scan)

- Coating serial dilutions of whole cell products
- Detection of specific antigens with MoAb's
- Goat anti Mouse IgG-HRP

Is this the right selection?

- Gene activation
- Protein production
- Immunoprofilling

Identification of proteins by LC-MS

MS/MS spectra Peptides (protease fragments) of peptides Protein m/z Identified Matching peptides/ proteins in silico MS/MS pattern Peptides predicted Protein from proteolysis database from theoretical peptides m/z

Institute for Translational Vaccinology

Nature Reviews | Molecular Cell Biology

Quantitation of proteins by LC-MS

Quantitation of peptides and proteins

Up and down regulation of protein expression

	T=0	T=6	T=12	T=24
Pertactin	1.69	1.06	0.48	0.15
(P14283)				
Putative periplasmatic substrate binding protein (Q7VWX9)	0.11	1.03	1.82	2.47

Gene and protein expression

Institute for Translational Vaccinology

% virulence proteins in WCV

Institute for Translational Vaccinology

Relation antigen content and protection

Institute for Translational Vaccinology

Vaccine protein composition

2DE

LC-MS

Institute for Translational Vaccinology

Vaccine protein composition

Institute for Translational Vaccinology

Proteomics whole cell based vaccines

	WCV	OMVs	
Peptides identified	7600	_	
Proteins identified	1200	-	
Proteins quantified	332	268	
Proteins differently expressed	151	-	
% virulence factors	≈25%	50-75%	
Top 5 of known antigens	groEL, fhaB, vag8, tcfA, brkA	Vag8, brkA, tcfA, groEL,sphB1	

Conclusions

Antigenic composition of whole cell based pertussis vaccines is largely determined by production process conditions

Key marker antigens

- expected: Ptx, FHA, Prn, Fimbriae
- determined: FHA, Vag8, BrkA, TcfA

Efficacy of pertussis vaccine seems to be related to the proportion of specific antigens in the product

LC-MS is a powerful tool to characterize undefined vaccines like WCV

More detailed information can be requested by mail:

marit.holleman@intravacc.nl

