

Tools to monitor consistency: visual inspection and inspection technology. Global, regional and national expectations

Gaetano Baccinelli, Sales Manager Stevanato Group Engineering Systems

Stevanato Group Brand Structure

Different options for inspecting

Technology	Handling	Inspection
Manual	Operator	Operator
Semi-Automatic	Automated	Operator
Fully Automatic	Automated	Automated

Pro's Con's of each Technology

Inspection Machines Portfolio

ENGINEERING SYSTEMS

Controls layout for a typical automatic inspection machine

	Туре	Position
ST0	Closure control	Exit
ST1	Crimping control	Turret
ST2	Body control lateral	Turret
ST3	Particle and fill level	Turret
ST4	Particle inspection	Turret
ST5 Particle inspection		Turret
ST6	Floating particles	Turret
ST7	Bottom inspection	Outfeed

Example of defects

Particulate Matter

Closure Integrity

Cosmetic Defects

Standard transparent solutions: particles inspection

Most common foreign matter found in drug production

Substance	%	Nature	Source	
Cellulose	9.9	fibers	clothes, towels, wipers, autoclave paper	
Longchain hydrocarbon	3.0	rubber, PE	stopper, bottles	
Polyester	4.4	fibers, particles	Cleanroom clothes and filters	
Talcum	0.2	product	API	
Silicon oil	3.3	particles, drop	Sealing, siliconisation	
Protein (Keratin)	3.2	mostly flakes	Human skin dust, hair	
Polystirene	1.9		^{8,8} 9,9 Longchain hydrocarbo	
Polypropylene	3.1		Polyester Talcum	
Carbon	4.3		4,3 3,0 3,0 Silicone oil Protein (Keratin)	
Titandioxide	0.7		0,7 4,4 Polystyrene Polypropylene	
Organic	4.3		4,3 0,2 3,3 0,2 0,2 0,2 0,2 0,2 0,2	
Fluorescence	8.8		1,9 3,2 Give a organic substance	

Inspection performance limit

100% inspection (human or machine) is needed to detect small quantities of randomly sourced foreign material

- 100% inspection (man or machine) is not 100% effective.
- Zero is not a practical limit.

lg'Ar.

Different contaminants have different response to light

A reliable detection has to combine the advantages of the various lighting methods in order to detect the largest range of contaminants

Absorbing

- Carbonization
- Impurities
- Rubber
 fragments

Reflecting

- Glass fragments
- Crystallization
- Silicone oil
- Delamination

Polarizing

- Fibers
- Impurities
- Product aggregation

- Fibers
- Impurities
- Glass fragments

AstraZenec

11

Particles inspection: particle in white background

Possible Source

- Product carbonization for improper flame sealing of ampoules tip
- Impurities from API/WFI
- Rubber particles

Particles inspection: particle in black background

Reflecting Particles

- Glass fragments, filling needle not centered
- Product crystallization
- Silicone oil from stopper/plunger
- Glass Delamination

Particle inspection: fibers in polarized light

Inspection method

• Polarized light illumination

Possible Source

- Fibers from filter/wipper
- Impurities from API/WFI
- Fibers from clothing

How to combine all these setup in a single camera station?

High resolution high speed cameras acquire from **40 to 120 images**, half with one illumination setup half with another to detect all kind of contaminants

Standard interframe analysis

Acquisition of a sequence of 12 up to 120 images from the container under inspection

Compute the sequence of differential images one by one

Background subtraction

The reflexes are removed but sometimes canceling particles

sequence

Optrel: new concept, dynamic analysis

- Particle trajectory reconstruction using the Kalman filter
- Trajectory post analysis filtering
- Analysis of the meniscus
- Analysis of the container bottom

Particles inspection: dynamic vs interframe analysis

Particles inspection: trajectory details

- Diff Threshold =12
- Area Threshold = 5
- Particle size < 50µm
- Trajectory life= 60 frames
- Field of View = 10 ml

Optrel dynamic analysis, trajectory alghoritm

A smart way to reach high efficiency and reduce false rejection in automatic inspection

How to achieve those performances?

New Generation Advanced Vision System Facts

- 64 high resolution images per container per particle station (2000x2000pxls)
- 256 images per container for particle inspection
- 1GB of particle inspection data per container to process in real-time

Trajectory, best solution for floating particles inspection

Trajectory best performing for bottom particles inspection

View of particles inspection on syringes

Particles inspection: particle white background

Particles inspection: particle white background

Particles inspection: particle white background

Particles inspection: particle with frontal light

Cosmetic inspection: heavy particles

The particle detected by the inspection of the bottom profile

Suspensions solutions: different approach

Bottom inspection

Bottom inspection at infeed complement particle inspection

Particles inspection: suspensions products

Suspension Products: automatic inspection

Product preparation is fundamental for suspension

High speed spinning system

High Speed Spinning System up to 6000rpm

Particles inspection: suspensions

Special light combined with high speed rotation (pat.)

More examples of particles inspection

Sample #09, small glass chip

Figure 3 Sample #24, big glass chip

Sample #09, medium glass chip

More examples of particles inspection

Figure 4 Sample #09, small black particle

Figure 6 Sample #29, white fibre

Freeze Dried Inspection

Freeze dried inspection: critical quality attributes

View of some defects

Particulate Matter

Closure Integrity

Cosmetic Defects

Freeze dried inspection: color camera

Up to 36 images are taken while the vial is rotating in front of the camera, in order to increase the analysis of the cake.

Color high resolution frame camera allows to better detect the defect inside the cake and it allows to recognize alteration on the product's color.

Freeze dried inspection: color camera

Result on the inspection of a good sample

Result of the inspection on a defected sample

Top cake inspection

- Container in rotation for multi-perspective analysis
- Color 2000x2000 area camera at high speed (359 frames/sec)
- Mixed illumination for lighting cake or powder contamination with programmable intensity control

Freeze dried lateral side inspection: line scan technology

Lateral cake inspection

Bottom cake inspection

More from bottom

Contamination inside cake?

Some Idea

NIR Imaging: identification of contaminants

VIS

NIR

Plastic trasparent layer

NIR Imaging: identification of contaminants

VIS

Blonde Hair

Glass Fragment

Cosmetic Inspection

Flip Off / Alu Seal inspection: single station

Alu seal inspection

Inspection technology: linear scan camera and/or matrix camera

Aluseal Inspection

Special technology linear scan cameras

Possible Source:

- Improper crimping station setup
- Variability on closure components

Resolution:

• Detect crimping defect smaller than 50µm

Linear scan camera for OCR control

- Interactive definition of OCR and CODE READER
- High resolution print verification using linear cameras and special illumination techniques on alu-seal and glass surface

				Encoc Sub- F Encc sche	ding informat de type: Ptype: ⊽ Derauk ording eme:	Data Matrix Data Matrix Any		2			
534, 0)	Grey: 89 w:189	9.00 h 187.00		EQC	a [Any		•			
534.0) Code1Results*	Gray 89 w 189	9.00 h.187.00	Crissing E		a j	Any	Coll Size. T	•	Num Cole V	Num Cole X	
534,0) Code1Results* String 1234567890123456	Grey 89 w189 Read Status Read Source Ok R DATAMATER BM	8 00 h: 187.00 Read Type	Scheme E	ECC 500	c	Any String Size 0	Cel Size TI	• hreshoid	Num Cels X	Num Cels Y	Statistics

Linear scan camera for glass inspection

Body inspection (scratch on the surface)

Scratch highlighted in red color

Cracks on neck/ shoulder area

Special Technology Linear Scan Cameras

Linear Scan Cameras for plunger inspection

Defects on syringes

Particulate matter

Closure integrity

Cosmetic defects

Cosmetic inspection : tip cap, defect and shape control

- Performed on the infeed starwheel
- Three high resolution cameras at 120° with back and front illumination
- Rejection before the loading in the turret to avoid the seal breakage when the tip is not correctly positioned.

Cosmetic inspection : needle cover inspection

Finger grip inspection

Inspection Setup

Leak Detection and Containers Integrity

Container closure integrity: dye ingress leak detection

Dye Method	USP31<381> Ph.Eur. 3.2.9	ISO 8362-5 Annex C
Dye	0.1% aq. Me	ethylene Blue
Vacuum	-27KPa	-25KPa
Time at Vacuum	10 min	30 min
Time at ambient	30 min	30min
Detection	Visual ir	nspection

Figure 2—The correlation of microbial failure rate (%) and the mean logarithm of the absolute leak rate and nominal leak diameter for modified SVPs. The absolute leak rate (standard cubic centimeters per second) was determined by mass spectrometry-based helium leak rate detection. Microbial failure was measured by microbial ingress after 24 hour immersion in a bath (37°C) containing 10⁸ to 10¹⁰ *P. diminuta* and *E. coli* organisms/mL and a 13 day, 35°C incubation.

Kirsch, et al, PDA J Pharm Sci & Technol 51, 5, 1997 p. 200

Risk Of Microbial Ingress if >1um

Container closure integrity: dye ingress leak detection

Dye Test Not Sensitive Enough for Human Operator

Dye Test Sensitive if in conjunction with automatic spectrometer

Container closure integrity: HV leak detection

- Superior to Dye Test
- Objective
- Fast > 400 pcs/min
- HV better than Vacuum for viscous liquid
- No influence on proteinaceous active products

Vial hole size	Packages tested	# Packages ID'o DA	d as LEAKING (1	# Packages ID'd as LEAKING DAY 29				
(4)	(#)	Vacuum decay	HVLD	Vacuum decay	HVLD			
PRODUCT-FILLED								
15	10	8	10	2	10			
25	10	9	10	2	10			
50	10	10	10	3	10			
PLACEBO-FILLED								
15	10	10	10	10	10			
25	10	10	10	10	10			
50	10	10	10	10	10			

HV Test Sensitive Enough For Integrity Assurance

HVLD exposure effects on product P-C properties

HVLD Exposure	Product A				Product B				Product C			
	Monomeric Peak		High MW Species	Low MW Species	Monomeric Peak		High MW Species	Low MW Species	Monomeric Peak		High MW Species	Low MW Species
	Rel. MW	% Purity	% Purity	% Purity	Rel. MW	% Purity	% Purity	% Purity	Rel. MW	% Purity	% Purity	% Purity
None	142	97.6	1.5	1.0	138	98.0	0.5	1.1	170	99,1	0	0.9
1 x 25kV	142	97.5	1.5	1.0	138	98.0	0.5	1.1	170	99.1	0	0.9
10 x 25kV	142	97.5	1.5	1.0	138	98.0	0.5	1.1	170	99.1	0	0.9

ImClone Systems Products

Summary: HVLD exposure demonstrated <u>no impact</u>

Source: RxPax, LLC, PDA Metro Chapter, May 2011

Vacuum decay as alternative solution

For dry or liquid products, most package systems Detects pressure rise from gas or vapor egress limitations

- Protein clogging often prevents leak detection
- Liquid leaks may contaminate test chamber

Considerations

- Faster tests limit sensitivity
- Instrument design/make can influence test results
 - Transducers and internal system design
 - \circ No-leak baseline stability

Source: RxPax, LLC, PDA Metro Chapter, May 2011

NIR Spectroscopy for Lyophilized products

- Air path layout for easy integration into inspection machine
- H₂O Absorption Band 1400 nm and 1900 nm

Headspace gas analysis measurement layout

Fully integrated solution

Thank you for your attention!

For further information please visit www.engineeringstevanatogroup.com

