Characterisation of Sabin based inactivated polio vaccines

By Janny Westdijk and Gideon Kersten

Intravacc,

Bilthoven, The Netherlands

DCVMN 21 september

IPV quantity

Immunogen ≠ Protein ≠ Antigen ≠ Immunogen

Active	Unit	Assay
Amount: protein or virus concentration	gram, mole	protein assays, UV adsorption
Antigenicity: recognition by antibodies	DU	Immunoassay (ELISA, biosensor analysis)
Immunogenicity: induction of antibodies	VN titer, relative potency	Immunization plus serology

- If all protein is D-ag and no adjuvant is used:
 Protein = a*(Antigen) = b*(Immunogen)
- The correlation is within the same strain and serotype

How much virus is one D-antigen unit?

Relationship D-units and amount of virus based on A260nm of purified vaccine.

	ng virus/DU		ng virus/DU
Sabin 1	30	Salk 1	18
Sabin 2	112	Salk 2	49
Sabin 3	70	Salk 3	26

The D-ag unit represents different quantity of virus both between serotypes and vaccine strain.

Intravacc approach to assess Sabin-IPV antigenic quality

Antigenic fingerprints were made to:

- select antibodies for quantification purposes
- demonstrate batch consistency

Reagents and references are based on classical IPV:

- Reference Pu 91-01
- Home made and commercially available antibodies
- Two assay formats: sandwich ELISA and BIAcore

Conclusion: the D-ag unit is not one unit

- Magnetic Strength Strength Magnetic Mag
- * Dependent on antibodies
- Magnetic Sector A Dependent on product
- For a manufacturer the amount of active biomass produced is relevant
- How much viral protein is a D-ag unit?

Antigenic fingerprints obtained with a panel of antibodies can be helpful

- * to demonstrate batch consistency
- in stability studies
- * to demonstrate products consistency i.e.
 - from different production sites
 - * after process optimization or scale up
 - between different manufacturers

Product profile of three batches sabin IPV

Sabin-IPV immunogenicity (European Pharmacopoeia procedure)

- The potency of IPV can be determined in rats, (guinea pigs or chickens)
- * Dose titration.
 - 5 Dilutions per vaccine
 - 10 Rats per group
 - Reference vaccine
 - Image: One immunisation
- In vitro Sabin virus neutralisation on Vero cells
- All Intravacc immunogenicity data shown are anti-wild type virus

^{*)}Against wild-type virus

*)Against wild-type virus

Potency of Sabin-IPV and Salk-IPV in rats

	Dose Sabin/Salk		Neutralizing antibodies (² log)	
		A260		
Туре	(DU)	(mug)	Sabin-IPV	Salk-IPV
1	10/40	300/720	$\textbf{6.3} \pm \textbf{1.1}$	6.5 ± 1.4
2	16/8	1790/390	$\textbf{9.3}\pm\textbf{2.2}$	11.4 ± 1.0
3	32/32	2240/830	10.6 ± 1.3	9.6 ± 1.1

Standardisation of antigenicity (1)

- Model 2018 Note: N
 - Antibody
 - Reference
 - Method to measure amount of (virus) protein
- Alternative: any high affinity, D-antigen specific antibody allows absolute quantitation.
- This is called calibration free concentration analysis (CFCA)

Standardisation of antigenicity (2)

Principle of CFCA:

- Measure diffusion dependent accumulation of antigen to an antigen binding surface.
- Signal is a function of concentration, molecular weight and diffusion coefficient of antigen.
- Antigen is depleted through a D-antigen specific surface -> ACTIVE concentration (D-antigen per ml)

Development CFCA for IPV

Dimensions IPV:

- Molecular weight: 8250 kD
- * Diffusion coefficient: 1.44⁻¹¹ M²/s
- (Source: Koch F, Koch G. The molecular biology of poliovirus, 1985)

Type of sensor chip

- Selection of monoclonals
- Type of immobilisation (direct or indirect immobilisation)
- Specificity
- Reproducibility

CFCA: reproducibility

• 3 measurements on three different days

VC < 10%

18

CFCA: specificity

		Samples	Mabs
	Туре	Sabin I Sabin I + C-ag (1:1)	Hyb 295-17
	-	Sabin I heated (15 min 60 $^\circ$)	
ſ	ТУI	Sabin 2	Hyb 294-06
	ce 2	Sabin 2 + C-ag (1:1)	
	N	Sabin 2 heated (15 min 60 °)	
	Тy	Sabin 3	Hyb 300-06
	pe :	Sabin 3 + C-ag (1:1)	
	3	Sabin 3 heated (15 min 60 $^\circ$)	

n= 3 (on different days)

19

Correlation CFCA and protein (Peterson)

Active concentration vs. protein concentration (Peterson) of monovalent Sabin virus or IPV and Salk-IPV batches

Summary

- Salk and Sabin: different antigenic and immunogenic profiles.
- Antigenic fingerprinting helps to demonstrate batch consistency.
- D-antigen unit as antigenic quantity: less suitable from a standardization point of view.
- Antigen quantity expressed as 'active concentration' (amount or concentration of protein with D-antigenicity; microgram/ml Dantigen) is an attractive alternative.
- ITV offers assistance in characterizing polio vaccines:
 - Antgenic characterization (including the active concentration)
 - Model A Determination of thermo stability by biophysical characterization

