### **Plenary Session 2: Landscape**

# Clinical Trials of Inhalable Dry Powder Aerosols of Vaccines Using Puffhaler® or Solovent® Active Dry Powder Inhalers

Robert E. Sievers, Scott E. Winston, Stephen P. Cape, Jessica M.H. Thrall, Nisha K. Shah, Jane Duplantis, Diane E. Griffin, Wen-Hsuan Lin, Sharad Agarkhedkar, Rajeev Dhere, Vivek Vaidya, Ravindra Muley, Prasad Kulkarni, Subhash Kapre, Ken Powell, Mark Papania and Paul Rota

**Next-Generation Vaccine Delivery Technology Meeting**Geneva, Switzerland

Name: Robert E. Sievers

Email: Bob.Sievers@colorado.edu

Title: Professor of Chemistry

Date: February 18, 2014





WISH LIST

# FIX THE WORLD SIEVERS

BIG IDEAS. SMART INNOVATION. BRIGHT FUTURE.



**POWER OF TECHNOLOGY** 



**METHOD:** Inhalation

COMPANY: Aktiv-Dry

**PRODUCT:** PuffHaler

Bundled in blister packs and inhaled, the dry-powder measles vaccine targets the respiratory system—just like the virus. It's transportable and stable for six months without refrigeration.

**STATUS**: Inhalers conferred measles protection on monkeys; a trial with 60 human volunteers in India recently wrapped up.







## **Dry Powder Inhalers (DPIs)**



©2011 by National Academy of Sciences



- Basic designs are usually dependent solely on the indrawn breath of the user to generate an aerosol. Modifications such as the PuffHaler® or Solovent may be used to disperse the aerosol into a spacer or reservoir from which the recipient can inhale the aerosol.
- A mask or a nasal adapter can also be attached when necessary.

















### **DRY POWDER MEASLES VACCINE:**

### Macaque Study

### Confirmation of protection by challenge with live virus:

- 14 months after immunization were challenged with wildtype measles virus and found protected against measles (at Johns Hopkins).
- Unvaccinated macaques developed rash and measles virus present in their bloodstream.
- Immunized macaques exhibited strong measlesspecific immune (memory T-cell) responses in contrast with the controls, which showed none.







### **DRY POWDER MEASLES VACCINE:**

### Phase I Clinical Trails

- Project taken from conception (2005) to IND filing (2010)
- > Technology developed at AD, CU, and BD transferred to SIIL
- Designed, installed, and qualified a GMP CAN-BD at SIIL for production of MVDP for clinical trials and multiple batches manufactured

#### Stability Studies:

- The myo-inositol-stabilized dry powder measles vaccine has a shelf-life of 4 years at 2 to 8°C
- ◆ Serum Institute of India has shown stability at 25°C for 6 months.

#### Human Studies:

- ◆ As of March 2012, 60 adult volunteers inhaled dry aerosol vaccine using the PuffHaler or Solovent, or received the traditional measles injection.
- No serious adverse events have been recorded to date.







# Aerosol Dry Powder Advantages over Liquid Vaccines

- Powders inherently more stable than liquids
- No water to transport or keep sterile
- Less chance of vaccine contamination
- Less vaccine wastage with single-dose packaging
- No needles and therefore no re-use, including lower risk of disease transmission
- No electricity/refrigeration or batteries required for delivery
- Potentially lower dose and therefore lower side-effects by vaccinating through the same route the disease uses.







# **Projected Savings Over 40 Years**

WHO: \$50M\*

- Aerosolized Wet Mist
  - = 20% savings by not using sharps

PATH: \$100M\*

- Needle-free, Jet Injection of current lyophilized vaccine
  = savings through waste management
- Aktiv-Dry and CU: \$700M
  - Aerosolized Dry Powders = cut vaccine wastage, do not need sterile water for reconstitution, and cut needleuse, hazards and disposal problems

\*Louis P. Garrison, Jr. (University of WA)

|                              | MVDP Puffhaler® |            | MVDP Solovent <sup>IM</sup> |           | SMV       |           |
|------------------------------|-----------------|------------|-----------------------------|-----------|-----------|-----------|
|                              | (n=20)          |            | (n=20)                      |           | (n=20)    |           |
| Days                         | 28              | 84         | 28                          | 84        | 28        | 84        |
| Seroconverted                |                 |            |                             |           |           |           |
| $(\geq 2 \text{ fold rise})$ | 9 (45.00)       | 11 (55.00) | 4 (20.00)                   | 9 (45.00) | 5 (25.00) | 7 (35.00) |
| n (%)                        |                 |            |                             |           |           |           |
| p-value*                     | 0.1848          | 0.2036     | 0.7050                      | 0.5186    | -         | -         |

<sup>\*</sup>comparing MVDP with SMV

The safety evaluation looked at incidence of adverse events, rate of notable vital sign abnormalities, abnormal clinical laboratory test values, and unusual findings in physical examinations.

- Serum concentrations of measles antibody activity were determined by ELISA and summarized for each group by a commercial ELISA kit (Trinity Biotech Captia<sup>TM</sup> Measles IgG).
- The following immunogenicity parameters were reported:
  - o Proportion of subjects on Day 28 and Day 64 showing seroconversion defined as a 2-fold rise in IgG titers with respect to baseline
  - o Geometric mean concentration (GMC, IU/L on Days -7, 28 and 84) of measles IgG antibodies







### **CAN-BD**

### Carbon Dioxide Assisted Nebulization with a Bubble Dryer®

# Gentle spray drying process variant that utilizes pressurized CO<sub>2</sub>

- ✓ Fine dry micro-particulates
- ✓ Lower processing temperatures
- ✓ High throughput (400 million doses)







# Carbon Dioxide Assisted Nebulization with a Bubble Dryer®









10 cm

 Pressurized emulsion of solution in liquid CO<sub>2</sub>

2. The emulsion is rapidly expanded to atmospheric pressure through flow restrictor to generate aerosols of microbubbles and microdroplets.

Restrictor tip

Flow restrictor tube

Low volume tee

 $ID = 75 \mu m$ 

- The aerosol plume is dried with nitrogen or carbon dioxide at temperatures between ambient and 70°C in the drying chamber
- 4. Dry fine powders are collected and packaged in single-dose blister packs or capsules

### GMP Bubble Dryer at Serum Institute of India









# FNIH Grand Challenges in Global Health Initiative: Inhalable Measles Vaccine Dry Powder

- > \$20 M International collaboration
- ➤ Aktiv-Dry led a 30-member interdisciplinary team of immunologists, engineers, scientists, physicians, consultants, business, and regulatory specialists
  - Aktiv-Dry (AD)
  - University of Colorado
  - Serum Institute of India Ltd
  - CDC
  - Sristek

- Becton-Dickinson Technologies
- Avanza Laboratories
  - Johns Hopkins
- University of Kansas

### <Technology Name>: Mechanism of Action

#### **Overview:**

- <As required describe technology mode of action from performance perspective both engineering / immunological>
- <Historical reference of use could also be included on this slide>

Insert representative photo / data summary as applicable / video of action

### <Technology Name>: Specific Example

### **Description:**

 <Overview of technology – to include manufacturer name>

Insert technology photo

#### **Status:**

 <bri><bri>data overview – technical status, data overview (preclinical/clinical), regulatory, market availability, pricing/cost)

## <Technology Name>: Benefits and Challenges

#### **Benefits:**

 <highlight benefits and strengths of technology>

Insert representative technology photo

### **Challenges:**

 <highlight challenges facing technology class – include potential barriers to programmatic use, technical weaknesses, etc. as applicable>

# <Technology Name>: Opportunities and Way Forward

### **Global Public Health Challenge:**

 <Highlight global public health challenge that technology address>

### **Technology Availability:**

- <Probability of technology availability for program use in the next 10 – 20 years if not sooner>
- <What is needed to realize availability of technology?>
- <Suggestions for the way forward>

Insert representative photo / data summary as applicable / video of action