

EMPOWERING VACCINE RESEARCH

A Novel Method for Antigen Characterization of Measles and Rubella Vaccines

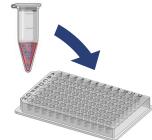
Dr. Erica Dawson, CTO

MR Vaccine Manufacturing Overview

CCID₅₀ is typically a 10- to 14-day time to result

 $CCID_{50} CV can be 65\% (\pm 0.3 log_{10})$

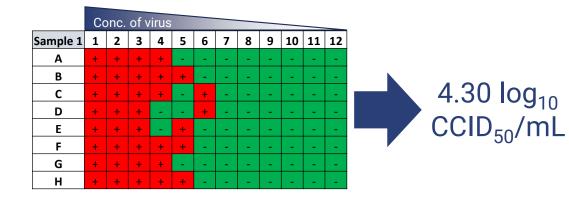
Current CCID₅₀ Process for MR Vaccines



Serially Dilute

Virus-Containing Sample

Plate 8 replicates of each dilution



Add cells Measles: Vero cells Rubella: RK13 cells


```
Evaluate by eye 
for CPE
```


- Manual process with visual inspection
- Method is time-consuming and error prone with \pm 0.3 log₁₀ variability possible
- CCID₅₀ imprecision can result in expensive lot rejections

VaxArray Process for MR Vaccines

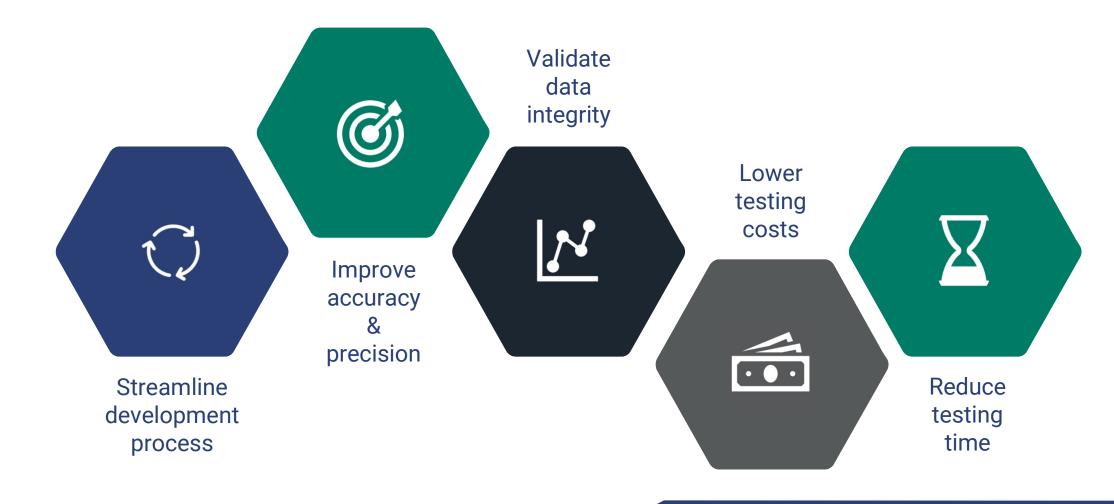
Prepare standard curve and samples

Add samples and standard curve to slide(s)

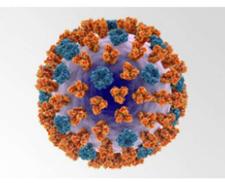
Remove samples and standards, add label

Wash slide

and dry



Read on VaxArray Imaging System; Automated data analysis


- 5-hour time to result with only 30 minutes hands-on time
- Automated data analysis using accompanying software
- Assay measures antigen concentration, not infectious dose

InDevR's Mission to Empower Vaccine Research

Vaccine Kits Available

Influenza Kits

Simplify and Accelerate Antigen Characterization

Mono and multivalent kits for reliable subtype specific quantification of influenza vaccines

Coronavirus Kits

Quantification of Antigen or Antibody Response for Vaccine Development Multiplex measurement of antigens or antibodies related to SARS-CoV2

Measles and Rubella Kits

Same Day Antigen Quantitation Analyze monovalent measles, monovalent rubella, or bivalent vaccine samples

Multiplexed Fluorescence Immunoassay

- Antibody or antigen assays
- Reagent sparing microarray format
- High specificity and stability indicating
- Proven with split virus, subunit vaccines, recombinant proteins, virus-like particles, and serum samples
- Works with purified or crude samples

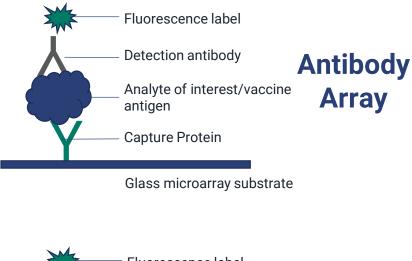
Platform Includes

- VaxArray Instrument
- Software with CFR Part 11
- IQ/OQ tools

Enabling Global Standardization

Globally available

Allows standardization across departments and locations High Quality

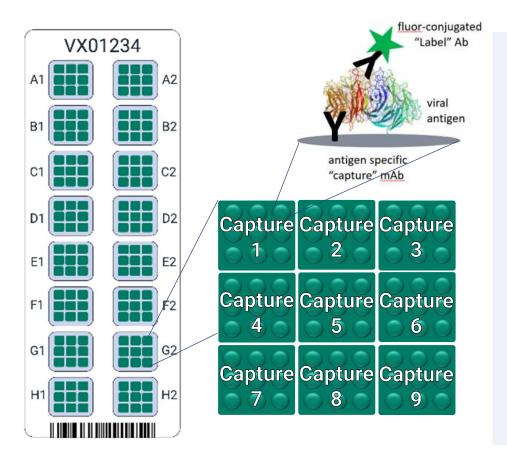

Validated to ICH guidelines

Manufactured under ISO:13485 quality standards Validation Tools

21 CFR Part 11 compatible software

IQOQ tools available

VaxArray Assay Configurations

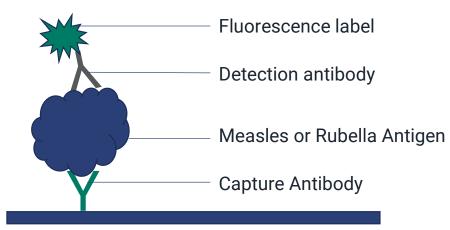

Fluorescence label
Detection antibody
Antibody of interest
Capture Antigen

Fast, Easy, and Versatile

- 30 minutes hands on time
- Same day time to result
- 32 or 64 samples/standards per kit, depending on kit
- Linear range is ng/mL ug/mL, depending on assay

Glass microarray substrate

VaxArray Slide Format

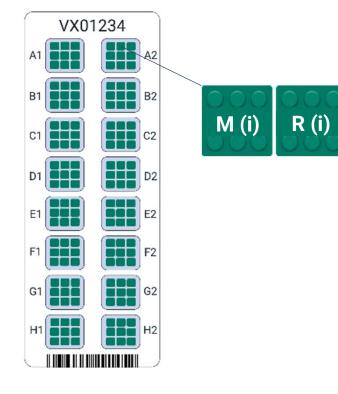


Slide Features

- Slide has an 8 x 2 replicate microarray format
- 16 samples/standards per slide
- Each microarray well contains 1-9 capture arrays
- 9 replicate spots printed of each capture molecule

Measles and Rubella Assay Format

Antibody Array Format



Glass microarray substrate

Multiplexed Immunoassay

- Captures both measles and rubella antigens on spatially-separated capture antibodies
- Established VaxArray platform
- Same day result
- Measures total conformational protein
 - Measles NP
 - Rubella E1

VaxArray Measles and Rubella Kit v1.0

MR Kit Features

- 1 capture antibody for each virus
- 9 replicate spots of each antibody within each array
- Analyze monovalent measles, monovalent rubella, or bivalent MR vaccine samples without neutralizing rubella to measure measles
- Quantitation via standard curve using an appropriate user-supplied standard

Measles and Rubella Kit Configuration

Image: State State

Assay Kit

- 2 VaxArray Measles and Rubella v1.0 Slides
- 1 bottle 4x MR Lysis Buffer
- 2 bottle MR Blocking Buffer
- 2 bottles Wash Buffer 1 Concentrate
- 2 bottles Wash Buffer 2 Concentrate
- 6 8-tube strips

Sold Separately Measles Detection Label Rubella Detection Label

VaxArray Measles and Rubella Assay Workflow

Total time to result is ~ 5 hours

Total hands-on time is ~ 30 minutes

- 1. Prepare samples and standards
- 2. Lyse samples for 30 min
- 3. Combine with MR Blocking Buffer
- 4. Incubate for 4 hours on shaker

Note: Overnight incubation provides additional sensitivity if needed

- 5. Remove excess sample, add detection label, and incubate on shaker 30 min
- 6. Serial washing steps, then dry slide
- 7. Imaging is <1 minute per slide

Software Setup is Simple

Example			&	Setup		01	maging 🛓	C Results				
	Analysis Informatio	n	Sam	oles					Standards			
	Analysis Name Example		=	10	00000	01	Sample ID	Dilution	🔵 Default Dil	utions	9 9 9	
	VaxArray Assay		1000001	A1 Std	1 1.	-A2 A2	The second se	1.00	U Custom Di	lutions Standa	ards Template 💌	
	Measles and Rubella v1.0	·	100	B1 Std	2 1	-B2 B2	1-B2	1.00		Measles 🗹	🗹 Rubella	
	Number of Slides Quant	itative Analysis					1-02	1.00	Lot	Lot	Lot	
	Slide 1: 10000001	Description		C1 Std	3 1-	-C2 C2	1-D2	1.00	Description	Description	Description	
	Reagent Kit: Lot	Description		D1 Std	4 1-	-D2 D2	1-E2	1.00	Std 1 (µg/mL)	1.000	1.000	
	Detection Label: Lot	Description		E1 Std	5 1.	-E2 E2	1-F2	1.00				
	Fiducial Label: Lot	Description					1-G2	1.00				
				F1 Std	6 1	-F2 F2	1-H2	1.00				
				G1 Std	7 1-	-G2 G2	1					
				H1 Blar	nk 1-	-H2 H2						

Software Provides Automated Quantitation

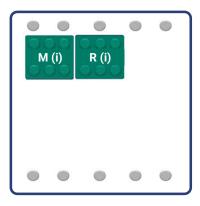
		VaxArray	
Example	👗 Setup 💿 Imaging 🔛 Results		
	Data Analysis		
	VX205262 Nacada Public		
	S 81 Std 2 1-82 82 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		
	Calculated Result: 8.93e3 µg/mL		
	00 Std 4 1-D2 02		
	F1 Std 6 1F2 F2 + e1 Std 7 162 e2 -		
	HI Blank 1-H2 HZ 0 3000 6000 9000 1-A2 Concentration [µg/mL] 0 3000 6000 9000		
		J	
Results			
	Capture Selection Calculated Sample Concentration (µg/mL): Analysis Complete		
	M(i) R(i) 1-A2 8.93e3 8.13e3 Analysis open for editing		
	1-B2 7.84e3 8.28e3		

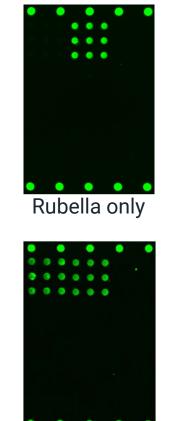
Software Results Exportable to Excel

InDevR							V	axArray ≡
rom: 4/13/2020 To: 1/8/2021	Search						Exam	nple
nalysis ID	Status Assay		↓ Updated On	Updated	Ву	۸.	OPEN ANALYSIS	OPEN IN EXCEL
xample	Completed Mea	sles and Rubella v1.0	1/8/2021 3:18:12	PM VaxArı	ay	1 R	ESULTS REPORT	EXPORT IMAGES
D File Home Insert Page La	yout Formulas Data Re	Example.xlsx - Ex eview View Help Q Tell m	cel e what you want to do	e e		− □ × A Share	ilculated.	VaxA
Paste Clipboard Clipboard Clipboard Clipboard Clipboard Clipboard Clipboard Clipboard Clipboard Clipboard Clipboard Calibri C	· A [*] A [*] ≡ ≡ ∎ ≫ · ☆ · Δ · S Alignment	ab General - ab - \$ + % > \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Conditional Format as Cell Formatting * Table * Styles * Styles	Elisert → Delete → Format → Cells	* Filter * Select *	iensitivity Sensitivity		VaxA
A1 • : × f	D E F	G H I J	K L	M N	O P	Q R	formation entered.	VaxA
- 13) + + + 0.600 0.800 1.200 tration (μg/mL)	DEPORTS DEPENDENTS OF	+ + + 500 0.800 1.000 1.200 tion (μg/mL)					
10	Cal Curves Medians Raw	Data (+)	E					

17

InDevR


EMPOWERING VACCINE RESEARCH

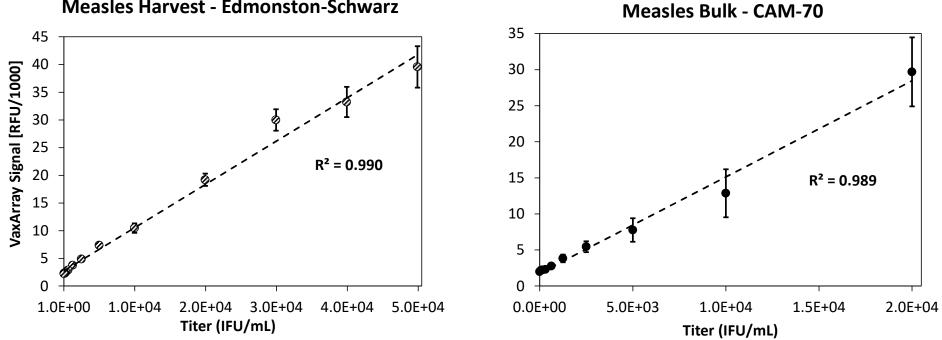

VaxArray MR Assay Performance

Capture Antibodies are Specific

Measles only

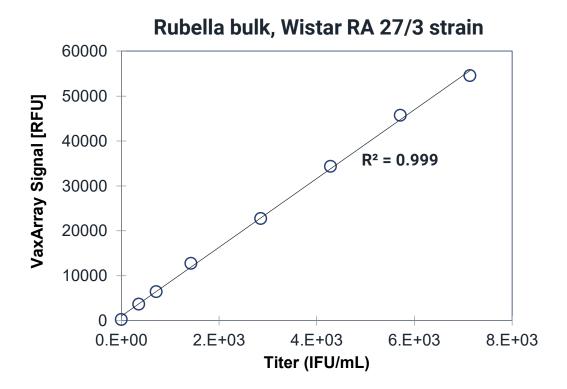
Bivalent sample

- Virus-specific monoclonal antibodies enable analysis of monovalent or bivalent samples using the same kit
- Most testing performed using Measles Edmonston-Schwarz and CAM-70, and Rubella RA 23/7
- Applicable to all M and R strains used in current vaccines
- MMR or MMRV kits also feasible

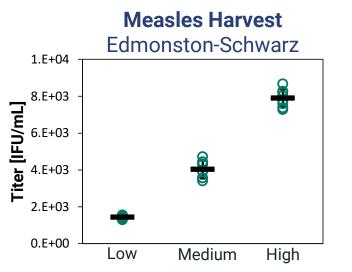

Limits of Quantification and Linear Range

Strain	LLOQ (IFU/mL)	ULOQ (IFU/mL)	Linear Dynamic Range
Measles CAM-70	$8.0 ext{ x }10^2$ ($\pm ext{ 6\% RSD}$)	>1.0 x 10 ⁵	≥ 125
Measles Edmonston-Schwarz	$3.5 ext{ x }10^2$ ($\pm ext{ 16\% RSD}$)	>5.0 x 10 ⁴	≥ 143
Rubella RA 27/3	3.6 x 10^2 (\pm 5% RSD)	>1.55 x 10 ⁴	≥ 43

Values obtained from rubella and measles bulks and harvest samples Lowest allowable concentration in vaccine is 2 x 10³ IFU/mL


Measles Linearity

Measles Harvest - Edmonston-Schwarz

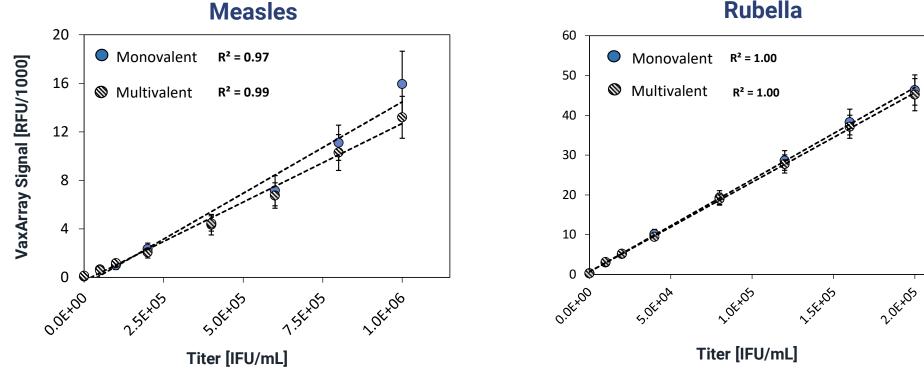

Excellent linearity with dilution for measles



Standard curve shows excellent linearity for rubella as well

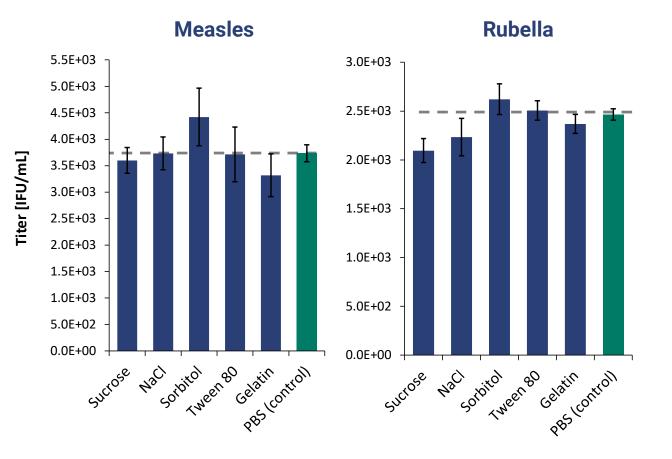
Assay Demonstrates High Precision

Sample	%CV
High	6.1
Medium	11.9
Low	7.0



Sample	%CV
High	2.9
Medium	7.2
Low	4.0

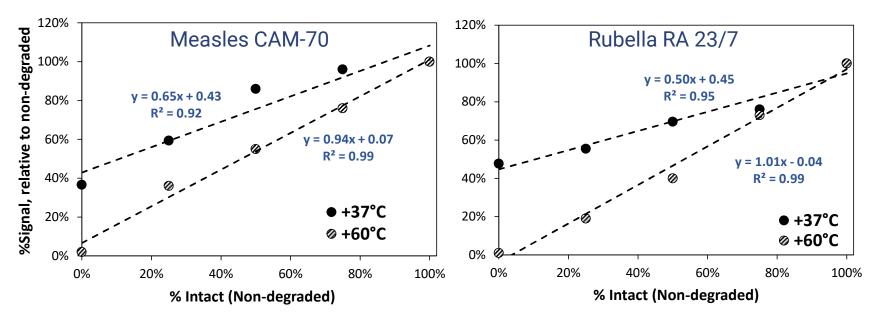
- 8 replicates of three samples analyzed: high, medium, and low concentration
- 1 user, 1 day
- Samples analyzed against a 7-point standard curve
- Solid bar is 8-replicate average
- Error bars are standard deviation of average (8 replicates)


Monovalent or Bivalent Analysis

Response curves for each are not significantly affected in the presence of the other virus

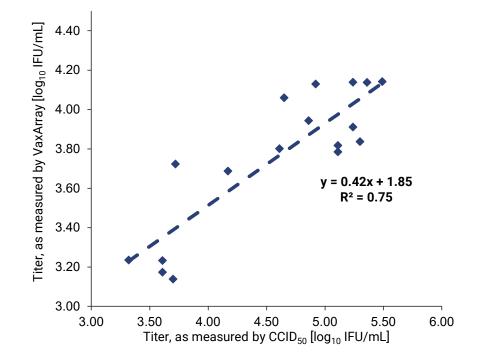
Rubella

Performs Well with Interfering Substances



Demonstrates good accuracy, with all producing < 18% difference from control

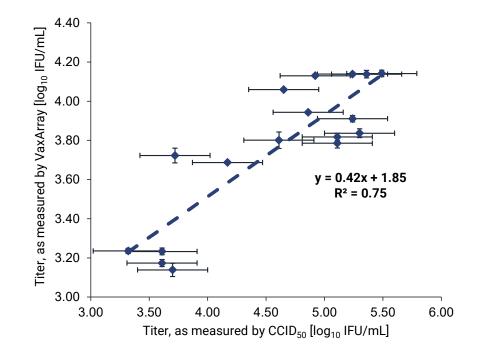
Substance	Testing Conc
Sucrose	0.38%
NaCl	0.90%
Sorbitol	5.0%
Tween 80	0.125%
Gelatin	1.6%


Thermal Degradation

Untreated vs. heat-treated at 60C for 48 hrs and 37C for 24 hrs

- 60C data: VaxArray MR assay is measuring only the intact protein in the sample (slope=1)
- 37C data: did not show complete loss of VaxArray signal, but CCID₅₀ (not shown) showed loss of infectivity;
 37C likely does not fully denature the epitopes probed by the VaxArray antibodies

Rubella Harvest Samples Correlation to CCID₅₀

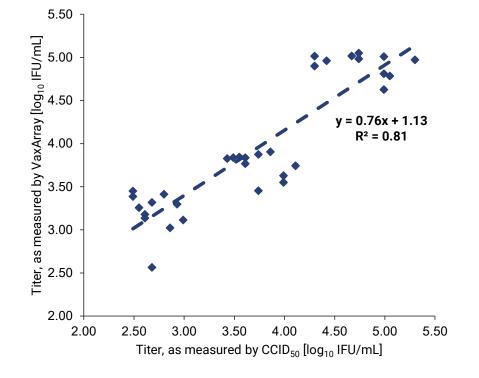

Experimental Design

- 17 in-process rubella samples analyzed by CCID₅₀ and VaxArray
- Varying harvest days of 2-20 days post infection and production lot
- Different lot of vaccine monobulk used as VaxArray calibrant

Results

VaxArray generally correlated to CCID₅₀ (BUT NOT EQUIVALENT)

Rubella Harvest Samples Correlation to CCID₅₀

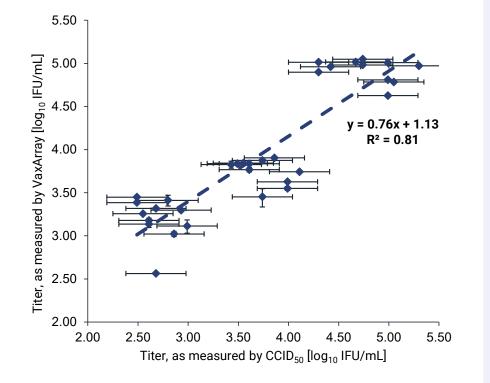

Same data as previous slide with added error bars

Results

• CCID₅₀ error bars shown in x direction are assumed typical error of $\pm 0.3 \log_{10}$

 VaxArray error bars in y direction (± 1 std dev of mean, n=4) are tiny in comparison

Measles Harvest Samples Correlation to CCID₅₀


Experimental Design

- 33 in-process measles samples (Edmonston-Schwarz) analyzed by CCID₅₀ and VaxArray
- Separate harvest sample (not included in sample set) used as VaxArray calibrant

Results

VaxArray generally correlated to CCID₅₀ (BUT NOT EQUIVALENT)

Measles Harvest Samples Correlation to CCID₅₀

Same data as previous slide with added error bars

Results

• CCID₅₀ error bars shown in x direction are assumed typical error of $\pm 0.3 \log_{10}$

•Similar to rubella, VaxArray precision of the replicates is significantly better than CCID_{50}

YaxArray Measures Total Conformational Protein

VaxArray measures total conformational protein and not quantity of infectious virus particles

Ratio of total conformational protein to infectious particles may vary batch to batch, as a function of harvest time, etc.

Crude harvest samples do not produce equivalent results to $CCID_{50}$ but are generally correlated ($R^2 \sim 0.75 - 0.8$)

VaxArray vs. CCID₅₀ for Purified Rubella

Rubella bulk previously characterized by CCID₅₀ used as VaxArray calibrant

		Concent	rated Vi	rus Pool			Bulk		Fi	nal Vacci	ne
Lot	Α	В	С	D	E	В	С	F	G	н	I.
VaxArray (log ₁₀ IFU/mL)	6.06 (±0.06)	6.27 (±0.05)	6.26 (±0.04)	5.98 (±0.02)	6.38 (±0.04)	6.15 (±0.02)	6.03 (±0.03)	6.27 (±0.03)	4.31 (±0.18)	4.36 (±0.04)	4.38 (±0.04)
CCID ₅₀ (log ₁₀ IFU/mL)	6.11	6.24	6.24	6.07	6.30	6.15	6.13	6.11	4.34	4.26	4.22
Difference (log ₁₀ IFU/mL)	0.05	0.03	0.02	0.09	0.08	0.00	0.11	0.16	0.03	0.10	0.16

More purified rubella samples produce much closer equivalency to CCID₅₀

VaxArray vs. $CCID_{50}$ for Purified Measles

- Measles bulk (CAM-70) characterized by CCID₅₀ used as VaxArray calibrant
- Bulk material produced closer equivalency to CCID₅₀
- Measles component in vaccine measured ~0.5 log₁₀ lower by VaxArray compared to CCID₅₀
- Possible explanations?

	Βι	ılk	Final Vaccine				
Lot	Α	В	С	D	E		
VaxArray (log ₁₀ IFU/mL)	6.83 (±0.06)	6.83 (±0.05)	5.18 (±0.13)	5.36 (±0.08)	5.28 (±0.08)		
CCID ₅₀ (log ₁₀ IFU/mL)	6.99	6.90	4.82	4.76	4.88		
Difference (log ₁₀ IFU/mL)	0.16	0.21	0.36	0.60	0.40		

- Measles aggregation in both bulk and vaccine could be affecting VaxArray measurement
- Measles degradation over time (CCID₅₀ values historically assigned by collaborator)
- Monovalent bulk not an appropriate calibrant for this strain (use previously characterized vaccine?)

VaxArray MR Assay Advantages over CCID₅₀

Metric	CCID ₅₀	VaxArray	Improvement	
Sample Requirements	100 µL per plate	~10 µL	10x	
Information Content	1 plate per sample; multiple replicates of each dilution required	16 arrays/slide, both viruses simultaneous when needed	Multiplexed—simultaneous analysis in bivalent samples	
Hands On Time	4-6 hours	30 minutes	Less time in lab	
Time to Result	10-14 days	5 hours	Faster answers	
Standardization	Home-brew assay; likely site to site differences	Global product with standardized reagents	Standardization reduces risk	
Precision	65% RSD (± 0.3 log ₁₀ IFU/mL)	< 15% RSD	3-4x improvement	
Accuracy	50 - 200% of expected	80 - 120% of expected	Significant improvement	

InDevR Services Available

Testing Services

Testing Services

InDevR offers a range of testing services to support vaccine research and development

Custom Testing & Kits

Customize VaxArray Assay to Your Needs Custom array design under ISO 13485:2016 requirements to meet your project needs

GLP Testing Services

Testing Service Options

Run commercially available kits Create and run custom kits SRID confirmation MUNANA confirmation Purity Adjusted Total Protein

Antibody Kits Available

- Influenza Seasonal Hemagglutinin
- Influenza Pandemic Hemagglutinin
- Influenza Seasonal Neuraminidase
- Influenza Nucleoprotein
- Influenza Monovalent H1, H3, B/V, B/Y
- Coronavirus Spike Protein
- Measles and Rubella

Antigen Kits Available

Coronavirus SeroAssay

InDevR Custom Services

Custom Options

Antibody arrays Antigen arrays Multiple targets in each test

Print what you want and need Obtain more results in less time

Applications

- Custom antibody kits for rapid quantification of antigen levels during bioprocess development, monitoring, or potency testing
- Custom antigen kits to measure vaccine response in clinical specimens or for serosurveillance studies
- Replacement of ELISAs to improve time to result and reduce reagent usage

Custom Kit Development Process

Printing Feasibility

- Screen reagents for optimal printing conditions
- Determine specificity and relative sensitivity

Performance Assessment

- Measure LOD, LOQ
- Evaluate linear range
- Test intra-lot precision

Manufacturing Validation

- Test inter-lot precision
- Develop QC protocols
- Create documentation
 and custom packaging

Examples of Custom VaxArray Assays

- Custom antigen characterization (potency) assay for recombinant influenza vaccine
- Custom influenza serological assay for use in vaccine clinical trials
- Custom COVID-19 antigen characterization (potency) assay for recombinant spike protein-based vaccine
- Custom COVID-19 serological assay for use in vaccine clinical trials

Thank you for your time and attention

We welcome any questions you may have regarding the VaxArray platform—please contact us at:

sales@indevr.com